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                                                      ABSTRACT


In many forecast applications orders that have been received through the current time period contain partially complete customer requirements for a number of time periods in the future.  Such lead-time information may exist in a variety of businesses such as product delivery in manufacturing, beneficiary payments in life insurance, investment payments in banking and ticket sales in airlines.  This paper describes a model that is designed to utilize such incomplete lead-time data when forecasting future customer requirements.  Results are included from testing the model. These tests utilize historical records obtained from both manufacturing and service organizations.  
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INTRODUCTION

      With the advent of JIT and quick response manufacturing, customer specified lead times are taking on increased significance in inventory planning across the supply chain. In traditional inventory models, where controlling for stockouts usually involves specifying fill rate constraints or  establishing restrictions on the probability of a stockout during a lead time, the  emphasis is on prompt delivery of the order upon its receipt. While such an approach is applicable in the context of traditional supplier-customer relationships, it “is distinctly inadequate in most JIT and quick response environments.”  (Federgruen and Katalan, 1996, p. 533)  Information technologies such as EDI  and private satellite communication systems allow companies in a supply chain to “convey orders rapidly, which results in advance warning. A customer’s demand thus comes with a given due date or service window within which the customer expects delivery.” (Federgruen et al., 1996, p. 533)  Consequently, one service window is no longer applicable to all customers; in practice there may be a wide range of requested due dates which must be taken into account in inventory planning. Few studies have examined the use of customer waiting times for inventory management (See, for instance, Chen and Zheng, 1992;  Lee and Nahmias, 1992; Sherbrooke, 1975 ); these papers are typically concerned with determination of the customer waiting time distributions in models where order lead times  are exogenously given. More recently, researchers have tried to incorporate customer specified lead times in their inventory models.  Sox, Thomas and McClain (1994)  examined the probability that a customer order is satisfied within in any specified service window assuming the inventory system contains both make to stock and make to order items. Federgruen and Katalin  (1996) illustrated how base stock levels can  be set so that specified fill rates for any particular service window or distribution of service windows can be met.

       There are additional ways of utilizing customer specified lead times besides the models described above. Since inventory planning  in JIT environments is so dependent on accurate demand forecasting (Krupp, 1999; Lawrence, 1999; Yasin, Small and Wafa, 1997), it may be useful in practice to exploit the data on customer provided lead time to predict demand. As customers place orders in advance of actual need, partial information on  eventual future demand is generated. This partial demand data can then serve as  input to an appropriate forecasting model. Within the forecasting literature, there are a number of studies which investigate forecasting with incomplete data. Many of these papers describe interpolation methodologies, which are applied to time series with a high proportion of missing data. (See, for instance, Delicado and Justel, 1999; Maravall and Pena, 1997)  Other studies have examined the reliability of provisional data in time series forecasts. (Diebold and Rudebusch, 1991; Gallo and Marcellino, 1999). In contrast, this study will propose an alternative methodology for forecasting with partial demand data which incorporates the added dimension of customer specified lead times. 

 Proceedings of the Eleventh Annual Conference of the Production and Operations Management Society, POM-2000, April 1-4,2000, San Antonio,TX.

THE FORECAST MODEL


For a particular product, suppose we consider all orders from a customer which are requested for delivery in a specific time period (t).  This demand may be distributed with respect to the lead-times supplied by the customer.  Fig. 1 shows such a distribution of orders for product (A) which were actually received by a manufacturing company located in North Carolina.  We shall use this data to illustrate concepts contained in the model's design.  It is also the data used in a preliminary test of basic assumptions within the model.

Let t be a particular time period and let h be a designated number of such periods.  

D(t,h) shall denote the sum of customer demands for period (t) which have lead-times 


[image: image1.wmf]³

 h.  As an example, in Fig. 1 let t correspond to month (4) of 1997.  For this request date, orders were received from month (10) of 1996 to month (5) of 1997.  These orders provided lead-times from  +6  to  -1.  D(t, -1) = 266 which is the total demand that ultimately materialized.  D(t,4) = 106  which was realized with orders received thru month (12) of 1996. (The existence of a negative lead-time illustrates that customer demand records were not always accurately maintained.)

Each column in Fig. 1 shows customer demand as it is distributed with respect to lead-time.  Characteristically, these distributions range over lead-times from about 6 to -1 with a maximum demand occurring at 3 or 4.  An input to the model is a minimum lead-time, M, for which non-zero demands may occur.  For product (A) we might use M = -3.  Let  
[image: image2.wmf]t

 denote the current time period (that period from which we shall project our forecast).  In our example 
[image: image3.wmf]t

 is month (11) of 1997.  Customer demand for period (
[image: image4.wmf]t

+ M) is completely known.  This identifies the first period in our forecast horizon.  With M = -3, the first value of D(t,M) is computed for month (8), 1997.  We wish to forecast D(t,M)  for each t over a designated number of time periods.


First Basic Assumption: For Product (A) we have observed a similarity of demand distributions with respect to lead-time.  Our first assumption is motivated by the belief that over a short period of time there will not be an appreciable difference in a customers buying habits when expressed in terms of the lead-time he supplies.  More formally, we make the following Assumption I: For a particular product and for any two consecutive time periods, there is no statistical difference in the cumulative distributions of demand when distributed with respect to customer provided lead-times. A preliminary Chi-Square test of Assumption I supports the belief that the classification of demand by lead-time is independent of its classification by time period.

Under Assumption I, and for any two consecutive periods: t-1,t  there should be no statistical difference between the fraction of total demand with a specified lead-time,h:
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We have for each  h such that the ratios are defined:
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This equation states that the total demand ratios which will ultimately materialize should be, statistically, the same as the lead time ratios which we can currently compute. In our model we actually forecast total demand ratios using computed lead-time ratios so long as Equation (2) remains statistically sound.  Based on our date analysis we limited the use of lead-time ratios to
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four months beyond the current date.  In general a limit L, on the value of  h  is specified as an input to the model.

From equation (2) we have the recursive equation:
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 EMBED Equation.3  [image: image11.wmf]·
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Let  
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  denote the current time period.  The total demand for 
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, D(
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+ M,M), may be  computed.  Also, we may compute a lead-time ratio for each t: 
[image: image16.wmf]t

+ M 
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 + L where h  is chosen to be the minimum lead-time such that D(t,h) is currently known (Fig. 1).  The forecast model applies these computations to Equation (3) in computing  D(t,M) for L time periods in the future.


Second Basic Assumption: As a general rule, customer demand (sales) of a particular product within a business usually grows or declines each time period as a percentage of previous values rather than by a fixed amount. The rule claims that D(t,M) = k
[image: image20.wmf]·

D(t-1,M), where k
[image: image21.wmf]·

100 is the percentage value.  In our second assumption, we do not require k to remain fixed but we do retain the expectation that demand ratios (rather than actual demands) are linearly related over time.  Assumption II: For a particular product, there exists a significant linear relationship between the expected demand ratios and their corresponding time periods over the forecast horizon.
                                                      RESULTS


The forecast model was applied to data shown in Figure 1.  Month 11, 1997 was the current time.  Data used extends from month 3, 1997 through month 3, 1998.  The forecast horizon extends from month 12, 1997 through month 5, 1998.


Figure 2 shows the 9 months of total demand which was known from month 3, 1997 through month 11, 1997.


Figure 3 shows the 8 months of ratios computed from the known total demands together with the lead-time ratios computed from the lead-time data and extending 4 months into the forecast horizon.


In Figure 4, the lead-time ratios were converted to estimated total demand using  Equation (3).  These estimates are joined to the known demand from Figure 2.  

Figure 5 shows the complete demand that actually materialized after the 4 month lead-time had transpired.  The actual lead-time demand of Figure 5 may be compared with the estimated lead-time demand of Figure 4.  Over the 4 month lead-time, a "seasonal pattern" existed for the product being forecast due to budget considerations of the customers.  There was a decline in demand for December followed by a sharp increase in January and a subsequent decline in February and March.  This pattern was anticipated in November using the lead-time ratios.

Figure 6 shows the results of exponential smoothing applied to the demand ratios.


Figure 7 shows the results from converting the expected ratios in Figure 6 to expected demand. This conversion utilized Equation (3). Expected ratios forecast from the previously computed lead-time ratios caused expected demand to increase and then decline over the forecast horizon.  


The expected demand forecast generated from lead-time information was compared with two parameter exponential forecasts of expected demand when no ratios or lead-time information was used. Figure 8 shows that without lead-time information there was no anticipation that expected demand would increase and then decline over the forecast horizon.

            (References and Figures may be obtained by contacting the authors.)
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