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Abstract

We propose a rank-based process control chart that is distribution-free and does not require any parameter estimations.  The nonparametric control chart is based on the rank distribution of the cumulative sum of individual observations.  In a Monte Carlo simulation, we show that our rank-based control chart is consistently better than the traditional Shewhart control chart in detecting a small shift of the process mean and that its coefficient of variation of the run length is even better than those of the EWMA and the CUSUM control charts.

1. Introduction

Statistical process control charts have been widely used as a fundamental tool of modern quality management.  In most process control charts, a decision-maker plots sample points in order of occurrence on a graph that has upper and lower control limits.  The control limits are usually chosen so that, if there are no special causes of variation affecting the process, nearly all of the sample points would fall between the upper and lower control limits.  Thus, unless there is any point that plots outside of the control limits, the decision-maker concludes that the process is in a state of statistical control.  Thus, the determination of the control limits, along with the sample size and the sampling frequency, is one of the most important tasks in designing a control chart.

In most cases, the control limits are determined based on the basic assumption that the individual observations –  or, at least, the subsample means –  follow a normal distribution.  In many practical situations, however, a decision maker may have sufficient reason to doubt the validity of the normality assumption.  Based on an empirical study of a sample of 235 quality control applications, for example, Alwan and Roberts (1995) concluded that "violations of assumptions are the rule rather than the exception in practice."

The normality assumption is not only critical in the design of control charts for variables, but also has significant effects on the evaluation and selection of a control chart.  The performance of a control chart is usually measured by the average run length (ARL) and, when the data do not follow the assumed normal distribution, the calculated ARL may be significantly different from the actual ARL.

Due to the importance of the normality assumption in the design and evaluation of control charts, several authors have investigated the effect of non-normality on such control charts as 
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 and R charts.  Burr (1967), for example, concludes that "
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 and R charts are quite robust relative to non-normality," and "we can use the ordinary normal curve control chart constants unless the population is markedly non-normal."  Schilling and Nelson (1976) have also studied the effect of non-normality on the control limits of the 
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 chart and concluded that, in most cases, samples of size four or five are sufficient to ensure reasonable robustness to the normality assumption.

The robustness of the normality assumption in 
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 and R charts is expected as long as the control limit constants are calculated based on the sample average of four or five observations.  By virtue of the well-known central limit theorem, the distribution of sample means approaches the form of a normal distribution as the size of the sample increases, even if the underlying distribution is not normal.  The convergence is faster for distributions that have properties like the normal such as being symmetric or, if not symmetric, having one mode.

In many situations, it is difficult, uneconomical, or impractical to obtain more than one measurements during a short time period, and therefore we must construct a control chart for individual measurements.  In the control chart for individual measurements, we cannot rely on the central limit theorem for normality and thus the effect of departure from the normality assumption becomes more serious.

In the paper, we propose a nonparametric control chart for individual measurements that does not depend on the normality assumption.  The only assumption we made is that the distribution is symmetric around the target value.  Our control chart can be used not only for individual measurements, but also for any other quality statistic such as the sample mean as long as the statistic is symmetric around the target value.  Due to its distribution-free property, our nonparametric control chart can be successfully applied to the situations where the distribution has heavier tails, is skewed or bimodal.  In summary, the major advantages of our rank-based control chart over the conventional control charts are (1) it is distribution-free, (2) it does not require any parameter estimation, and (3) it is sensitive to a small shift of the process mean.

2. Transition Probability Matrix

Suppose that a quality characteristic Xt measured at time t is an independent, identically distributed (i.i.d.) random observation from a symmetric distribution of the continuous type with mean x and variance x2.  The cumulative sum St of t successive observations is defined as
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(1)
Suppose that we are at time ( or epoch ) t, having observed the most recent n consecutive cumulative sums { St-n+1,..., St-1, St }.  Since the underlying distribution we consider is of the continuous type, we can rank the n cumulative sums from the highest to the lowest without tie.  Let Rn,t = { rt-n+1,..., rt-1, rt } denote the set of the ranks of the n cumulative sums at time t, where ri is the rank of the ith cumulative sum Si among the n cumulative sums in the set.  For n different cumulative sums, there are n! different sequences of ranks.  For n=3, for example, we have six different rank sets, {1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2}, and {3, 2, 1}.

Suppose that we measure a new observation Xt+1 at time t+1, calculating another cumulative sum St+1 according to (1).  The set of the most recent n cumulative sums at time t+1 becomes { St-n,...,St, St+1} with its rank set Rn, t+1 = { rt-n,..., rt, rt+1 }.  Let P[Rn, t+1 |Rn, t ] be the transition probability that the rank set will be Rn, t+1 at time t+1, given that the rank set is Rn,t at time t.  When the process is in control, the transition probabilities P[Rn, t+1|Rn, t ] are stationary and, for n consecutive cumulative sums, we can construct a finite Markov chain with n! states.

Although we may construct a transition matrix for a various size of n, we recommend n=3 because the size of the matrix becomes too large for a large n.  For n=4, for example, we need a 24
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24 ( = 4!
 EMBED Word.Picture.8  

4! ) transition matrix.  Thus, the rank-based control chart we consider in the paper is based on the 6
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6 ( = 3!
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3! ) transition matrix as shown in Figure 1.
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Figure 1.  Transition probability matrix for n=3.

The transition matrix in Figure 1 is applicable to any random walk process in which the observations are taken from a continuous symmetric distribution with mean zero.  Thus, based on the transition matrix in Figure 1, we can test the hypothesis whether or not the process mean is shifted from the target value due to certain assignable causes.

3. Performance Evaluation

The performance of our control chart has been evaluated in terms of the run length ( RL ).  The RL is the number of points that must be plotted before a point indicates an out-of-control condition.  When the process is in control, the average run length ( ARL ) should be large to avoid any false alarms.  Conversely, when the process is out of control, the ARL should be small to detect the shift as quickly as possible.

For the Shewhart control chart, it is not too difficult to compute the exact ARL if the specific form of an underlying distribution is known.  For example, the ARL for the Shewhart control chart with 3  control limits is 370 when the underlying distribution is normal and the process is in control.  For other types of control charts such as the exponentially weighted moving average (EWMA ) and the cumulative sum ( CUSUM ) charts, however, it is not straightforward to find the exact ARLs for given control limits.  Therefore, we performed Monte Carlo simulations to estimate the ARL of the rank-based control chart and compare it with those of other parametric control charts. 

In addition to the standard normal distribution, we considered three more types of underlying distributions in the simulation study: (1) heavy-tailed, (2) skewed, and (3) bimodal distributions.  The random observations from each distribution were generated using the standard normal random variable Zt and the standard uniform random variable Ut.  In the Monte Carlo simulation, the random variables Zt and Ut were obtained from the IMSL subroutines, RNNOF and RNUNF, respectively.

In comparison with our rank-based control chart, we choose (1) the Shewhart, (2) EWMA, and (3) CUSUM control charts that are widely used in practice.  For more details about the control charts, readers are referred to Montgomery ( 1996 ).

4. Concluding Remarks

We have proposed a rank-based control chart that is particularly useful when we do not have enough information about the underlying distribution.  Unlike most nonparametric control charts that are based on the ranks of actual observations, our control chart is based on the ranks of cumulative sums of observations.  Thus, our control chart can successfully detect a small shift of the process mean, overcoming the major weakness of most rank-based control charts.  As shown in the simulation study, our rank-based control chart is the best in terms of the coefficient of variation of the run length.  As expected, the rank-based control chart is very sensitive to small shifts, better that any other control charts in most distributions.

The control limit of our rank-based control chart can be easily determined from the chi-square table with 12 degrees of freedom.  If the type I error  is controlled at 0.01, for example, the control limit should be k=26.2170 for the two-sided test.  When the process is out of control in our rank-based control chart, we can easily determine whether the process mean is shifted upward or downward.  When many observations Xt are above the target value x, the random walk process St is moving upward and thus the rank set {3, 2, 1} appears more frequently than expected.  When most observations are below the target value, the random walk process is drifting downward, resulting in more transitions to the state {1, 2, 3}.
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