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Abstract
During the tactical planning of multi-period vehicle routing operations, dispatchers must incorpo-
rate enough flexibility in their routing plans to accommodate potential customers who have not yet
called in to place their order. We develop an Adaptive Robust Optimization framework to address
this challenging problem and solve instances to guaranteed optimality.
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Motivation and Literature Review

Several transportation problems involve the tactical planning and routing of vehicles over a short-
term horizon (typically several days). This is the case when customer requests are received dy-
namically over the planning horizon. Each request specifies a demand quantity and a set of days
during which service can take place. The distributor must assign a visit day to each customer and
plan the routes of each day so as to minimize the total routing cost. This is in contrast to typical
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vehicle routing problems (VRPs), where the planning horizon consists of one period (or one day)
and all customer requests must be serviced within this period. The tactical routing plan is typically
implemented in a rolling horizon fashion: routes of the first time period of the horizon are exe-
cuted while new customer requests are recorded; unfulfilled requests at the end of the first day and
new orders accumulated during the day constitute the new portfolio of requests to be considered
for scheduling the following day. This problem has been previously referred to as the Tactical
Planning VRP (Baldacci et al., 2011) or the Dynamic Multi-period VRP (Wen et al., 2010); it is
a special case of the well-known Periodic VRP, where all customers must be visited exactly once
throughout the planning horizon.

Such distribution problems are typical in systems in which logistics and other services are pro-
vided by appointment. Relevant examples include companies that provide on-site maintenance
services and distribution companies that deliver high-end or custom-built products. In such ap-
plications, contracts might be established with costs determined by time-to-delivery or penalties
associated with not visiting a customer on the first day of its requested window. Applications also
arise in the food distribution sector (Wen et al., 2010), urban logistics (Archetti et al., 2014), au-
tomotive transportation (Cordeau et al., 2015) and in vendor-managed inventory systems (Coelho
et al., 2012) .

In all of the existing applications, no knowledge is available about customers requesting ser-
vice in future time periods or, in other words, complete uncertainty is assumed about future re-
quests. Decisions are made using only information on service requests that have already been
placed. While this hypothesis might make sense in some applications, this is usually not the case
as companies often have large amounts of historical data which can be used to obtain forecasts
that provide information regarding calls for service in future time periods. It is possible to take
advantage of this information to generate better risk-averse solutions. Indeed, not accounting for
this information while planning can create situations which can either be (i) infeasible because it
could require too many vehicles on some day of the period or (ii) too expensive in terms of routing
costs.

In this regard, the work by Albareda-Sambola et al. (2014) considers uncertainty in future
customer requests. They assume a probabilistic description where at any time period they know
the probability of demand in subsequent time periods of every possible customer that does not have
a pending request. They then consider an adaptive policy by solving at each time period a VRP
subproblem to identify the set of pending customers that will be serviced in the current time period
along with the actual routes.

Problem Statement

In this work, we consider a novel robust optimization approach in which the uncertainty in future
customer requests (used interchangeably with ‘orders’) is captured in a discrete uncertainty set.
Our solution approach consists of designing routes for each day of the planning horizon such
that all customers that have already placed a request are visited exactly once. Furthermore, any
realization of future customer requests from the uncertainty set can be assigned to the designed
routes in a way that all vehicle capacities are respected. That is, we guarantee that every possible
realization of customer requests from the uncertainty set can be assigned to the routes in a feasible
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way. In this regard, the problem can be viewed as a two-stage robust optimization problem in which
the routing plan for the known customer requests are first-stage decisions and the assignment of
future customer requests to the routing plan constitute second-stage decisions.

Let h denote the length of the planning horizon and let P = {1, . . . ,h} denote the set of
days/time periods. We assume there is a single depot (denoted by 0), which consists of a ho-
mogeneous fleet of K vehicles, each of capacity Q > 0 available on each day of the horizon. Let
Vc = {1, . . . ,n} denote the set of customers who have a pending request. Each customer node i∈Vc
is associated with a demand qi > 0 and a day window [ei, li] (1≤ ei ≤ li ≤ h), where ei and li are the
earliest and latest days by which customer i must receive service. Denote by Vp ⊆Vc, the subset of
customers that can be visited on day p ∈ P, i.e., Vp = {i ∈VC : ei ≤ p≤ li}. Let node 0 denote the
depot. In the following, we describe how we model uncertainty in our context.

Model of Uncertainty

We assume that there is a set of potential customer requests, denoted by VO, each of which may or
may not realize throughout the planning horizon. Each request/order o ∈ VO is associated with a
certain customer co, a “call-in” day do ≥ 1, a day window [eo, lo] such that do < eo ≤ lo ≤ h,1 and
demand qo > 0, if the order does materialize. Note that we do not require co ∈VC; indeed, co could
be any customer registered in some sort of “database” of potential customers.

Orders from VO are realized from a (bounded) uncertainty set Ξ = {ξ ∈ {0,1}|VO| : Aξ ≤ b},
which consists of a finite (but possibly very large) number of discrete points. The random variable
ξ in this uncertainty set is a 0−1 vector and represents the materialization of orders from VO; more
specifically, ξo denotes whether order o materializes or not. Note that uncertainty in the actual
call-in day do can be accommodated in the above modeling framework by duplicating orders from
the same customer into different orders with the same demand but different day windows.

This model of uncertainty is very flexible as it allows us to capture various practically relevant
scenarios and linear correlations in the uncertainty. Moreover, these correlations can be combined
in any way possible. For example, we can easily account for the following scenarios:

• a budget of Γ > 0 requests throughout the horizon,

Ξ = {ξ ∈ {0,1}|VO| : ∑
o∈VO

ξo ≤ Γ}

• a budget of Γp > 0 requests on day p,

Ξ = {ξ ∈ {0,1}|VO| : ∑
o∈VO:do=p

ξo ≤ Γp ∀ p ∈ P}

• budgets of orders from the same customer (e.g., at most one placed call),

Ξ = {ξ ∈ {0,1}|VO| : ∑
o∈VO:co=c

ξo ≤ 1 ∀ c}

1Note that, if an order o for which lo > h was considered, the optimizer would push it to be served outside the
horizon because it is cheaper to simply visit the customer after time period h, while still being feasible for all scenarios
for which this order indeed materializes.
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Robust MILP Formulation

Let Gp = (Vp∪{0},Ep) denote the complete undirected graph in period p, where Ep = {(i, j) ∈
{Vp ∪{0}×Vp ∪{0} : i < j}. Each edge (i, j) ∈ Ep is associated with a travel cost ci j > 0. We
use variables xi jp ∈ {0,1} to denote if edge (i, j) ∈ Ep is traversed on day p ∈ P. Furthermore,
let yip ∈ {0,1} denote if customer request i ∈Vc is serviced on day p ∈ {ei,ei +1, . . . , li}. We use
auxiliary pseudo-binary variables zikp ∈ [0,1] to indicate if customer request i ∈ Vc is serviced by
vehicle k∈K := {1, . . . ,K} on day p. The following is a complete formulation for the deterministic
problem:

min
x,y,z ∑

p∈P
∑

(i, j)∈Ep

ci jxi jp (1)

s.t. ∑
j:(i, j)∈Ep

xi jp = 2 ∑
k∈K

zikp = 2yip ∀ i ∈Vp, ∀ p ∈ P (2)

∑
j∈Vp

x0 jp = 2K ∀ p ∈ P (3)

li

∑
p=ei

yip = 1 ∀ i ∈VC (4)

∑
(i, j)∈δp(S)

xi jp +∑
i∈S

(1− yip)≥ 2

⌈
1
Q ∑

i∈S
qi

⌉
∀ S⊆Vp, ∀ p ∈ P (5)

1− xi jp ≥max{zikp− z jkp,z jkp− zikp} ∀ (i, j) ∈ Ep, ∀ k ∈ K, ∀ p ∈ P (6)

zikp +
k

∑
l=1

z jl p ≤ 3− x0ip− x0 jp ∀ (i, j) ∈ Ep, ∀ k ∈ K, ∀ p ∈ P (7)

Constraints (2)–(3) are standard degree equations, (4) are assignment constraints, while (5) are
a novel generalized version of the rounded capacity inequalities, while constraints (6) and (7) are
responsible for the encoding of the auxiliary zikp variables (Gounaris et al., 2013). We remark that
inequalities (5) are exponential in number and, hence, are added dynamically in the context of a
branch-and-cut framework. We separated these inequalities using a simple modification in the tabu
search-based separation procedure for the standard rounded capacity inequalities (Augerat et al.,
1998).

In order to derive the robust formulation of our problem, we need to encode the following two-
stage robust constraint, which states that every realization of orders from Ξ should be assignable
to the currently existing routes. Here, Op := {o ∈VO : eo ≤ p≤ lo} for each p ∈ P.

∀ ξ ∈ Ξ ∃ ϑ(ξ) :


ϑokp(ξ) ∈ {0,1} ∀ o ∈ Op, ∀ k ∈ K, ∀ p ∈ P

∑
k∈K

lo

∑
p=eo

ϑokp(ξ) = ξo ∀ o ∈VO

∑
i∈Vp

qizikp + ∑
o∈Op

qoϑokp(ξ)≤ Q ∀ k ∈ K, ∀ p ∈ P

 (8)

Note that the decision-maker does not really care about the decisions ϑ in the current time period.
Ideally, they must be chosen after the realization of the uncertainty so as to obtain a routing plan
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that is least conservative. In that regard, the routing decisions can be viewed as first stage decisions
that will be decided here-and-now and will actually be executed–at least for the first period–,while
decisions ϑ can be viewed as second-stage recourse decisions that can adapt depending on the
realization of uncertainty. In fact, it is not difficult to show that a static ϑ−policy would be overly
conservative in most cases.

As a first approach, we consider the following robust model: ϑokp(ξ) = θokpξo, which always
assigns order o to the same vehicle k in the same time period p irrespective of the realization that
o is a part of. The robust formulation is then:

(R0) Eq. (1)
s.t. Eq. (2)− (7)

θokp ∈ {0,1} ∀ o ∈ Op, ∀ k ∈ K, ∀ p ∈ P (9)

∑
k∈K

lo

∑
p=eo

θokp = 1 ∀ o ∈VO (10)

∑
i∈Vp

qizikp + ∑
o∈Op

qoθokpξo ≤ Q ∀ k ∈ K, ∀ p ∈ P, ∀ ξ ∈ Ξ (11)

Note that the number of constraints (11) is typically very large and therefore, they are treated
in a cutting plane fashion within our branch-and-cut framework. For a fixed primal solution
(x,y,z,θ)∗, the separation problem to be solved is to compute ζ ∗(k, p) = maxξ∈Ξ ∑o∈Op qoθ ∗okpξo

for all k ∈K, p∈ P. If for some k, p, it happens that ζ ∗(k, p)> Q−∑i∈Vp qiz∗ikp, then the separation
problem gives us a violating realization ξ ∈ Ξ to be added back to problem (R0). This separation
algorithm is used at every node of our branch-and-bound tree and run after the separation of all
VRP-specific inequalities.

Computational Results

We derived 15 5-period instances from five benchmark CVRP instances, ranging from 20 to 100
customers, and 2 to 4 vehicles. We used specifications similar to those provided in Baldacci et al.
(2011) to generate the deterministic data of our problem (i.e., the set of fixed/deterministic cus-
tomers and their day windows). For each instance, we considered a classical budget uncertainty
set, Ξ =

{
ξ ∈ {0,1}10n : eT ξ ≤ Γn

}
, where n is the number of deterministic customers appearing

throughout the planning horizon, Γ ∈ {0,0.05,0.10,0.15,0.20,0.25} and e is the vector all ones.
This uncertainty set models that no more than Γn customer requests will appear throughout the
planning horizon. With increasing Γ, the level of robustness increases, albeit at an increased rout-
ing cost. The scenario Γ = 0 represents the deterministic equivalent of our robust problem, i.e., the
scenario where decisions are made purely based on requests that have already been placed.

In Table 1, we report, for each level of Γ: the number of instances (out of 15) for which a
robust feasible solution exists (denoted by # Feasible); the average cost increase over the Γ = 0
scenario, defined as (costΓ− cost0)/cost0, across all robust feasible solutions (denoted by % Cost
increase); the number of (feasible) instances which could be solved to optimality (denoted by #
Proven optimal); the average time to prove optimality of these instances in seconds (denoted by t
(sec)). Finally, for those instances which were feasible but could not be solved in the time limit of
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700 seconds, the residual gap (i.e., the optimality gap at the time limit) is reported as an average.
Our study allows the decision-maker to quantify the cost increase in implementing a robust

plan, and to decide the level of robustness that is appropriate for the application. For the instances
we considered, robust routing plans with Γ = 10% can be obtained with a modest cost increase of
less than 5%.

Table 1: Summary across 90 problems.
Γ (%) #

Feasible
(out of

15)

% Cost
increase

# Proven
optimal

t (sec) #
Reached

time limit

Residual
gap (%)

0 15 0.0 11 23.5 4 3.1
5 15 0.0 9 17.5 6 4.8

10 15 2.0 9 81.4 6 8.2
15 12 5.9 5 36.6 7 9.1
20 8 16.6 2 0.1 6 8.3
25 3 30.4 2 8.6 1 11.4
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