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INTRODUCTION 

 
As a result of technological progress, equipment used in a number of important economic 

sectors such as discrete manufacturing, chemical production, transport, defense, and health care, 

become more and more capital intensive. For that reason, but also for safety and security reasons, 

the uninterrupted processing of these equipment is essential. If an unplanned downtime due to 

failure occurs, it is of utmost importance to keep it as short as possible. Best thing of course is to 

avoid unplanned downtime using preventive maintenance, but unfortunately that is not always 

possible due to reasons that will be explained in the following. In that case, everything should be 

done to get the system up and running again as soon as possible. In order to do so, failing parts are 

often replaced by ready-for-use ones, since repair of the complete system on site requires too much 

time. Now, it is the availability of ready-for-use spare parts that counts, as well as the waiting time 

for service engineers and tooling needed. To minimize any delay due to absence of these resources, 

it is of utmost importance that the latter are readily made available. This leads to our key and 

complex integrated multi-resource planning problem. The added complexities are due to the 

definition of the right KPIs (key performance indicators) and the differentiation between various 

spare parts characteristics.  

 

Despite the overwhelming literature on maintenance and service, the approaches are still 

fragmented. The researchers either concentrate on server availability as in the classical machine 

repairmen problem or on spare parts availability, and with limited focus on tools, whereas it is 

clear that any integrated, or complete, solution encompasses all three resources. However, to that 

end one needs models that have not been developed so far, although we may borrow from some 
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partial approaches in other fields. Capacitated resources and uncertainty due to unplanned 

downtime are two inherent characteristics that are central to our key problem.  

 

Due to the primary importance of advanced equipment to the system owners (customers in the 

sequel), performance-based service contracts were introduced. Such a contract is an agreement 

between the customer and the manufacturer that contains precise information on the target service 

levels that the system should satisfy in addition to the involved costs. The most commonly used 

Service Level Agreements (SLAs) are based on targets on average availability of equipment and 

maximum time to fix a failure. Different types of contracts can be classified into different classes, 

e.g., platinum, gold, and silver, see (Cohen et al. 2006). It is clear that the contract value increases 

with the tightness of the targets specified. For example, 99\% equipment availability or 2 hours 

maximum time to fix are familiar targets used in the semiconductor and the aircraft industries. 

Moreover, penalties are paid by the manufacturer if SLAs are violated. Therefore, it is essential 

that the manufacturer differentiates its services offered to the different classes of customers. This 

can be done by assigning a higher priority to tighter SLAs. For the manufacturer it is necessary to 

avoid penalties that damage its reputation and lead to a loss of future businesses. Therefore, the 

manufacturer should concentrate on improving its products quality and reliability from the early 

design phase. This can be done by monitoring the performance of previous equipment in order to 

feed back this information to subsequent designs. These actions must be complemented in the 

operational phase by efficient and effective maintenance planning and operations. 

 

Maintenance tasks are divided into two categories: preventive and corrective, see (Ebeling 

2004). It is well known that preventive maintenance fails in eliminating all possible equipment 

failures. This is due to two facts. First, for some components, e.g., electronic components, it is 

hard to predict a future failure. This is because their wear-out process is weakly correlated with 

the usage.  Moreover, when a failure occurs it is not linked to a specific operation time. Second, 

when failures are predictable, e.g., failures of mechanical components, there are inherent errors in 

the statistical and physical models used. Advanced equipment are for instance mechatronic 

systems in which components are electronic, mechanical, or hybrid. In this case of unavoidable 

failures, corrective maintenance comes to the picture to keep up the equipment, usually by 

replacing the failed parts by ready-for-use ones. 

 

In this paper, we shall assume that the service tools are not extremely expensive which makes 

it economical for a service engineer to own the service tools needed for the corrective maintenance 

tasks. We will focus on the following service strategy inspired by common practices in the after-

sales maintenance logistics of advanced equipment. Upon arrival of a corrective maintenance 

request if any of the required resources (e.g., spare parts or engineers) is not readily available the 

request will be satisfied via an emergency channel with an ample supply of resources. The 

emergency channel has much shorter lead time with a much higher costs as compared to the regular 

replenishment channel. The objective of the service provider is to minimize the total costs of spare 

parts, service engineers pool, and of emergency. This will be done under Poisson random demand 

of maintenance requests, and both an exponentially distributed repair time and spare part's 

replenishment time. 

 

Our key contributions in this paper are as follow: 
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 We formulate a Mixed-Integer Linear Program (MILP) for the exact optimisation of the 

integrated spare parts and service engineers capacity planning. 

 We propose a computational efficient and accurate optimisation heuristics with a less than 

1% relative errors compared to MILP results and with a guaranteed convergence. 

 We show using simulation the insensitivity of the emergency cost to the repair time of 

equipment and the replenishment time of spare parts. 

 

LITERATURE REVIEW 

 

A quick and effective equipment repair means that upon a customer call for repair the 

manufacturer determines the required part(s) to replace, assigns a priority to the call according to 

the service contract, assigns one or more qualified engineers, and plans the necessary parts and 

tools. The integrated multi-resource planning problem of spare parts, engineers and tools, as we 

will show, has not been considered so far in the literature despite the overwhelming studies on the 

planning of these three resources individually.  

 

In spare parts management, the main objective is to meet the target service levels specified in 

the contracts at minimum costs. Note that, the value of a single part may amount to several hundred 

thousand dollars in advanced equipment. An important feature that is relevant when dealing with 

this problem: the spare parts and the stocking locations are both hierarchically structured. Spare 

parts can be broken down into modules, sub-modules, and piece parts, each with a different cost 

and a specific time to replace. Repairing the system by replacing a failed piece part is much cheaper 

than replacing a complete module. However, this usually comes with a significantly longer time 

to repair(replace). Hence, there is a tradeoff between the value of a spare part and the time to repair 

an equipment. Similarly, there is a tradeoff between the costs involved in stocking parts very close 

to the customers' sites (often called bases) and centrally (often called depot). A central depot can 

support multiple customers at different locations. Moreover, due to the reduction of risk with the 

pooling of demands of different customers it is desirable to position a number of the stocks 

centrally. However, having a strict SLA may force a manufacturer to move some spare parts closer 

to the bases. Sherbrooke (1968) was among the first to tackle the spare parts management problem. 

He proposed the quantitative METRIC model that considers these tradeoffs, and came up with 

close-to-optimal decisions on what and how many spare parts (modules, submodules, or piece 

parts) to keep in each location. Several extensions and new model features of the basic METRIC 

model are explained in (Sherbrooke 2004) and (Muckstadt 2005).  

 

The manpower planning problem focuses on the number of service engineers that should be 

hired for each service region in a network. In the literature, the manpower planning problem for 

field maintenance services is studied in (Agnihothri and Karmarkar 1992) and (Agnihothri et al. 

2003). The author highlights that a service territory size in which the workload can be managed 

with one service engineer provides a major advantage of a good relationship between the customer 

and the service engineer.  

 

Tools and service engineers as resources share few characteristics with the spare parts 

resource. For example, tools are usually demanded in sets and they are not consumed. This means, 

after a repair activity they become available for possible future usage. However, spare parts can 

be either consumable or repairable. This means, they have to be first replenished or repaired 
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(usually this is done in a different location) before they become available for a future use. 

Therefore, the planning of service tools and engineers needs different approaches from those used 

for spare parts. Few studies in the literature are dedicated to the planning of tools, (Vliegen 2010).  

 

To the best of our knowledge, the integration of the all key resources for equipment 

maintenance has not been found in the literature, although it is essential to tackle our problem. 

Similar problems arise in other fields, for example in flexible manufacturing,  and multi-resource 

project scheduling. The main difference with the problem studied in this paper is that we deal with 

optimal decisions under uncertainty. Another field where the multi-resource capacity planning is 

considered under demand and supply uncertainty is the Assemble-To-Order (ATO) production 

systems, see,  (Song et al. 1999) and the reference therein. Song et al. (1999) considered a multi-

product multi-component assembly system with a Poisson demand of products and a stochastic 

replenishment time of components.  

 

MODEL DESCRIPTION 
 

In this paper, we consider a single-site multi-item problem. The single-site is responsible for 

a specific service region. The arrival of requests for repairs is according to a Poisson process with 

an arrival rate 𝜆. A request for a repair consists of a simultaneous demand for two resources, 

namely, a service engineer and a single ready-for-use item. Upon a request arrival if any of these 

two resources is not available the costumer's request is satisfied via an emergency channel with a 

high cost. We assume that this emergency channel has an ample supply of both parts and engineers 

and will not affect further analysis. In Rahimi-Gharoodi et al., we consider the service strategy 

with emergency shipment for (only) spare parts.   

 

The objective is to minimize the total costs of service engineers, service parts, and 

emergency costs (related to the loss probability of requests). We assume that there are in total 𝑁 

different (types of) service parts. The probability that a part of type-i is requested is equal to 𝑟𝑖, 𝑖 =
1, … , 𝑁, with ∑ 𝑟𝑖 = 1𝑁

𝑖=1 . The inventory of type-i parts, 𝑖 = 1, … , 𝑁, is managed according to the 

base-stock policy, referred to as (𝑆𝑖 − 1, 𝑆𝑖). The stock replenishment time of a type-i part is an 

exponentially distributed random variable with a rate 𝜇𝑖. Finally, a mission of an engineer to a 

customer takes in total an exponentially distributed time with a rate 𝛾 and is independent of other 

engineers. The mission duration includes the time to go from the site to the customer's location 

and backward in addition to the system's repair time. The team size of service engineers in the 

region under consideration is equal to 𝐸. 

 

Let 𝑛𝑒(𝑡) denote by the number of engineers in the field on missions at time t. Let 𝑛𝑖
𝑠(𝑡), 𝑖 =

1, … , 𝑁, denote the number of type-i parts on-order to replenish the stock at t, i.e., the pipeline size 

of type-i part at t. Under the above assumption, the joint process 𝑀𝑡: =

{(𝑛𝑒(𝑡), 𝑛1
𝑠(𝑡), … , 𝑛𝑁

𝑠 (𝑡));  𝑡 > 0} is a continuous-time finite-state Markov chain with a state  

space Ω = {0, … , 𝐸} × {0, … , 𝑆1} × ⋯ × {0, … , 𝑆𝑁}. In the following, we shall denote by (𝑙; 𝒔), 

where 𝒔 = (𝑠1, … , 𝑠𝑁), an element of Ω. If the Markov chain is in state (𝑙; 𝒔) it means that there 

are 𝑙 busy engineers and 𝑠𝑖 parts of type-i are on-order (stock replenishment orders). In Figure 1, 

we show the transition rate diagram of 𝑀𝑡 in the single item case. The Kolmogorov forward 

balance equations of the Markov chain 𝑀𝑡in steady state read, ∀(𝑙; 𝒔), 
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(𝜆 ∑ 𝑟𝑖

𝑁

𝑖=1

+  𝑙𝛾 + ∑ 𝑠𝑖𝜇𝑖 

𝑁

𝑖=1

  ) 𝑝(𝑙;𝒔)  

= 𝜆 ∑ 𝑟𝑖𝑝(𝑙−1; 𝒔− 𝑒𝑖)

𝑁

{𝑖=1}

  +  (𝑙 + 1)  𝛾 𝑝(𝑙+1; 𝒔)   + ∑ (𝑠𝑖 + 1)𝜇𝑖 𝑝(𝑙; 𝒔+𝒆𝒊)

𝑁

{𝑖=1}

 , 

 

 

 

 

 

(1) 

where 𝑒𝑖 is thw unit vector with i-th entry equal to one and the rest equal to zero, and 𝑝(𝑙;𝒔) = 0  = 

0 if (𝑙; 𝒔) ∉ Ω. The balance equations together with the normalization condition ∑ 𝑝(𝑙;𝒔)∀(𝑝;𝒔)∈Ω =

1 gives the steady state probabilities of the Markov chain. 

 

In the literature, it is common that a performance analysis of the system is first carried out 

to find a closed-form result of the key indicators, e.g., in this paper the loss probability is the main 

performance indicator. When it is hard to find a closed-form result the problem is solved 

numerically using one of the standard algorithms. By rearranging the states appropriately, the 

transition generator matrix of the Markov chain can be seen as a three-diagonal level-dependent 

finite-state quasi-birth process. The steady-state probabilities can be computed numerically using 

a standard algorithm. These numerical results help in exploring the behavior of the performance 

indicators as a function of the system parameters which facilitate the design of an 

exact/approximate procedures devised for the performance optimization. Instead of following the 

traditional approach, we shall try to directly build an exact optimization model with the objective 

of minimizing the total costs that include spare parts, engineers, and emergency costs under the 

constraints that the balance equations of the Markov chain should be satisfied. 

 

OPTIMISATION 

 
From the perspective of a service provider it is necessary to insure a high offered service to 

the customer at a minimal total cost. There is a trade-off between the cost of holding the resources 

and the emergency cost. The higher the former cost component (i.e., more resources are available 

upon request) the lower the latter and vice versa. Our objective is to find the optimal balance 

between all these cost components. Let us first introduce the cost parameters: 

 

 𝑐𝑒  cost of hiring a service engineer per time unit, e.g., hourly wage. 

 𝑐𝑖
𝑠 ost of holding a part of type-i per time unit, this cost may include cost of capital, storage 

and risk, including the obsolescence risk. 

 𝑐𝑖
𝑙𝑜𝑠𝑠 emergency of a request of type-i. 

 

The emergency cost of a type-i request per time unit is the product of 𝑐𝑖
𝑙𝑜𝑠𝑠 and the type-i 

request (emergency) loss rate. The latter is equal to 𝜆𝑟𝑖, the arrival rate of type-i requests, 

multiplied by its (emergency) loss probability. To find the optimal number of engineers (E) and 

items on stock (𝑆1, … , 𝑆𝑁) that minimize the total costs, we will introduce the following decision 

variables: 

 

 𝐼𝑙
𝑒 (𝐼𝑖,𝑙

𝑠 ) binary variable that is equal to one if the system has l active engineers (l parts of 

type-i) and zero otherwise. 
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 𝑦𝑙;𝒔 
𝑖 the probability that the Markov chain is in state (𝑙; 𝒔) and a new request of type-i can 

be still accepted. This happens when 𝑙 < 𝐸 and 𝑠𝑖 < 𝑆𝑖. That is $𝑦𝑙; 𝒔
𝑖  is either equal to 𝑝𝑙; 𝒔 

when the system has both an available-for-mission engineer and an on-shelf part of type-i 

or it is zero otherwise.  

 

As a function of the decision variables and the costs parameters, the objective function reads:  

 

𝑚𝑖𝑛   ∑ 𝑐𝑒𝐼𝑒
𝑙

𝐸̅

𝑙=1

  + ∑ ∑ 𝑐𝑖
𝑠 𝐼𝑖,𝑠𝑖

𝑠

𝑆̅𝑖

𝑠𝑖=1

𝑁

𝑖=1

  + ∑ 𝑐𝑖
𝑙𝑜𝑠𝑠𝜆 𝑟𝑖 ∑ (𝑝𝑙;𝒔 − 𝑦𝑙;𝒔

𝑖 )

∀(𝑙;𝒔)

𝑁

𝑖=1

,   

where 𝐸̅ and  𝑆𝑖̅ are the maximum allowed numbers of engineers and service parts in the system 

(truncation parameters). Note, as indicated above, the 𝑦𝑙;𝒔
𝑖  variable is equal to the 𝑝𝑙;𝒔 only when 

we have an available engineer and on-shelf part of type-i. Therefore,  the last term of the objective 

function (∑ (𝑝𝑙;𝒔 −  𝑦𝑙;𝒔
𝑖 )∀(𝑙;𝒔) ) gives us the loss probability of type-i requests. 

 

The costs minimization is subject to the following constraints. The balance equation of the 

Markov chain and the normalization condition should be satisfied. Constraint to ensure that if the 

number of engineers is not equal to l then the probability 𝑝𝑙;𝒔 = 0. Constraint to ensure that if 𝐼𝑙
𝑒 =

0 then all 𝐼𝑙+1
𝑒 , 𝐼𝑙+2

𝑒 , … , 𝐼𝐸̅
𝑒 = 0. Similarly, there are a number of constraints on (𝐼𝑖,𝑠𝑖

𝑠 ). The last 

constraints ensure that the variables 𝑦𝑙,𝒔
𝑖  is either equal to 𝑝𝑙;𝒔 when the system has an available 

engineer and a part of type-i or it is 0 otherwise. The obtained Mixed-Integer Linear Problem 

(MILP) has (𝑁 + 1) ×  (𝐸̅ + 1) × (𝑆1̅ + 1) × ⋯ × (𝑆𝑁̅ + 1 ) continuous variables (p's and y's) 

and 𝐸̅ +  𝑆1̅ + ⋯  +  𝑆𝑁̅ + 𝑁 + 1 binary variables (in Al Hanbali et al. (2016) we give the full 

problem formulation). It is easy to see that the size of the problem grows exponentially with the 

number of parts in the system N and with the truncation limits 𝐸̅ and 𝑆𝑖̅. Application of the 

proposed MILP to real-life problems is impossible. Therefore, in the following we shall propose a 

fast approximate method to evaluate the loss probability and a fast optimization heuristic based on 

local search algorithm to find the near-optimal number of engineers and spare parts in the system. 
 

OPTIMISATION HEURISTICS 
 

In this section, we introduce two heuristics to reduce the computation time of the MILP for 

large problem size. In the first heuristic, we propose a local search procedure while computing the 

loss probability in an exact way using a numerical algorithm to solve the balance equations 

described. In second heuristics, we propose to use the same local search procedure while 

computing the loss probability in an approximate way.  

 

Local Search with Exact Loss Probability 

 
Let us refer to the loss probability of type-i requests as 𝑝𝑖;𝐸; 𝑺

𝑙𝑜𝑠𝑠  when there are E engineers and 

𝑺: = (𝑆1, … , 𝑆𝑁) parts in the system. We propose a local search based heuristic, which at every 

point in time we decide to add or remove a unit of the resources that leads to the highest total cost 

reduction. Note that, the loss probability can be evaluated by solving the balance equations (1) and 

summing up the state probabilities for e=E or 𝑠𝑖 = 𝑆𝑖. The exact evaluation of the loss probability 
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is time consuming since the state space grows really fast with N and E. For that reason, in the 

following we propose an efficient approximate method to evaluate the loss probability. In order to 

prevent the deadlock of the search heuristic one can make a dedicated (taboo) list of all solutions 

explored so far by the search heuristic and only new solutions are evaluated.   

 

Approximation of the Loss Probabilities 
 

By plugging a product form solution in the balance equations in (1), we find that: (i) the 

number of busy engineers in steady state, 𝑛𝑒(∞), is distributed as number of customers in an 

𝑀/𝑀/𝐸/𝐸 with an arrival rate 𝜆(1 − ∑  𝑟𝑖 𝑃(𝑛𝑠𝑖  (∞) = 𝑆𝑖)) 𝑁
𝑖=1 and a service rate 𝛾, (ii) the 

number of parts on order (being replenished), 𝑛𝑠𝑖(∞) is distributed as number of customers in an 

𝑀/𝑀/𝑆𝑖/𝑆𝑖 queue with an arrival rate 𝜆 𝑟𝑖(1 − 𝑃(𝑛𝑒 (∞) = 𝐸)) and a service rate 𝜇𝑖. To compute 

(𝑃(𝑛𝑒 (∞) = 𝐸), 𝑃(𝑛𝑠1(∞) = 𝑆1), … , 𝑃(𝑛𝑠𝑁(∞) = 𝑆𝑁)), we propose the following stepwise 

iterative procedure: (i)  Initialize, 𝑝𝑒𝑛𝑔
𝑙𝑜𝑠𝑠, the blocking probability of a customer's request due to an 

unavailable engineer in the case there is an ample stock of spare parts. The latter probability is 

equal to the blocking probability in the 𝑀/𝑀/𝐸/𝐸 queue (Erlang-B formula). (ii) For each part's 

type, compute the arrival rate of type-i requests admitted in the system as 𝜆 𝑟𝑖(1 − 𝑝𝑒𝑛𝑔
𝑙𝑜𝑠𝑠). Find 

𝑝𝑆𝑖

𝑙𝑜𝑠𝑠, the loss probability of type-i requests, as the blocking probability in the 𝑀/𝑀/𝑆𝑖/𝑆𝑖 queue 

with an arrival rate 𝜆 𝑟𝑖(1 − 𝑝𝑒𝑛𝑔
𝑙𝑜𝑠𝑠) and a service rate 𝜇𝑖. (iii)  Compute the arrival rate of requests 

admitted in the system as 𝜆(1 − ∑ 𝑟𝑖 𝑝𝑆𝑖

𝑙𝑜𝑠𝑠𝑁
𝑖=1 ), using results in (ii). Find a new estimate of 𝑝𝑒𝑛𝑔

𝑙𝑜𝑠𝑠 

as the blocking probability in the 𝑀/𝑀/𝐸/𝐸 queue with an arrival rate 𝜆(1 − ∑ 𝑟𝑖 𝑝𝑆𝑖

𝑙𝑜𝑠𝑠𝑁
𝑖=1 ) and a 

service rate 𝛾. (iv) Repeat steps (ii) and (iii) until convergence of the loss probabilities.  

  

The iterative approximation of the probabilities converges to a unique solution if  

 

max (
𝜆

𝛾 𝐸
,

𝜆 𝑟1

𝜇1 𝑆1
, ⋯ ,

𝜆 𝑟𝑁

𝜇𝑁 𝑆𝑁
) < 1. 

 

For a detailed proof see (Al Hanbali et al. 2016). Note, we believe that for most practical cases 

the previous condition is satisfied in order to guarantee a small loss probability of a request. This 

is especially for companies with a strategy focused on offering a high service level to the 

customers. Note that when 𝑆𝑖 = 0, the probability 𝑝𝑆𝑖

𝑙𝑜𝑠𝑠 = 1 and should not be included in the 

iterative calculations.  

 

Quality and Efficiency of the Heuristics 
 

To evaluate the quality of the approximation we performed a number of experiments with 

different numbers of part types (N). Due to the exponential growth of the number of balance 

equations in the exact case we could  test our exact evaluations only for a very limited numbers of 

N. All the experiments are performed using Python based implementations on a computer with 

Intel Xeon E5-2697v2 2.70GHz CPU and 64GB RAM. The MILP optimization model is solved 

using Gurobi 6.0 optimizer. 
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The input data for these experiments are based on data from an OEM of advanced equipment. 

However, we had to modify that input data in order to satisfy the requirement of the experiments 

presented in this section. Namely, we scaled the failure rates such optimal solutions require about 

2 SKU's for each type of failure. In Table 1we compare the total system cost for different numbers 

of part types N. We conclude that the our heuristics are accurate and time efficient. 

 
Table 1 - Accuracy and efficiency of the heuristics 

 MILP E+H A+H Relative error 

N Costs  time (sec)  Costs  time (sec) Costs  time (sec) E+H   A+H 

1 61626.11 0.05  61626.11 0.02 61634.41 0.37 0.000% 0.013% 

2 61877.33 0.22 61877.33 0.03 61885.66 0.47 0.000% 0.013% 

3 73410.04 2.17 73410.02 0.12 73439.66 0.72 0.000% 0.040% 

4 86213.11 110.10 86213.14 0.43 86276.56 0.97 0.000% 0.074% 

5 99919.88 6117.56 99919.88 1.71 100018.69 1.30 0.000% 0.099% 

6 - - 105525.58 4.35 105628.00 1.35 - 0.097% 

8 - - 114363.87 42.08 114478.41 1.62 - 0.100% 

10 - - 121535.43 2341.09 121653.77 1.89 - 0.097% 

15 - - - - 163923.43 2.67 - - 

20 - - - - 388558.17 3.29 - - 

30 - - - - 425964.67 3.80 - - 

50 - - - - 504623.00 6.83 - - 

70 - - - - 1047400.18 10.62 - - 

90 - - - - 1324498.79 24.45 - - 

 

Based on the results of this experiments we can conclude the following:  

 Results of MILP and E+H are almost the same. There is a slight difference that occurs due 

to numerical errors in MILP solver. This suggests that the optimization heuristic is very 

efficient and gives the optimal solution in most cases.   

 Results of E+H and A+H are comparable. There is a slight difference in the optimum cost 

due to the approximation of the loss probability in A+H. The optimum costs of A+H are 

always larger than those of E+H. 

 If we start with no item on stock, we rarely remove a resource unit in E+H and A+H. 

 

CASE STUDY AND MANAGERIAL INSIGHTS 
 

We consider a scenario with 60 parts from the company case. The holding cost per part per 

year is equal to 15% of the new part price, the engineer wage per year is equal to 50,000, and the 

penalty cost per request is equal to 200,000 (unless it is specified in the experiment). We performed 

a number of experiment in order to answer the following questions: (i) How the penalty costs will 

affect the total costs and the system fill rate? (ii) How the system KPI's depend on the service rate 

of the repair process (𝜇) and of the replenishment process (𝛾)? (iii) How the system KPI's depend 

on the variability of the items failure, and repair and replenishment? 

According to simulations, we find the loss probability is insensitive to the coefficient of 

variations of the repair time and the replenishment time. For example, by increasing the latter 

coefficient of variations from 0.7 to 2.2 the loss probability stays almost the same. This is true for 
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different values of the stock level and the number engineers. Note, the loss probability is sensitive 

to coefficient of variations the time to failures. In the following, we answer the first two questions.  

 

Impact of Penalty Cost 
 

It is known for many inventory systems with penalty costs for backorders that the optimal 

inventory level can be found using "news-boy" type relations between cost parameters and 

backorder probabilities. Similar results are also possible for the lost-sales type models. This allows 

finding an appropriate penalty costs when the desired loss probability is known. For the presented 

model such relation is not really possible due to the relation between numbers of engineers and 

stock levels, as will be shown in the examples below. This fact strengthens the role of the presented 

analysis and  optimization heuristics.  In Figure 1, we show the total costs and the achieved fill rate 

(percentage of satisfied orders from stock on-shelf) changes with the increase of the penalty costs.  

 

 
Figure 1: Impact of penalty cost on the total cost and fill rate 

 

Faster Repair Process vs Closer Supplier 

 

In this section, we vary the replenishment (e.g., closer vs farther supplier) rates by multiplying 

𝜇𝑖, 𝑖 = 1, … ,60 by a factor 𝐾𝜇 ∈  [0.01; 2]. In a similar way, we multiply 𝛾 the repair rate (e.g., 

slower vs faster repair process) by a factor 𝐾𝛾 ∈  [0.05; 2]. Figure 2 shows the total optimal costs 

obtained using the A+H heuristic as function of 𝐾𝜇 and 𝐾𝛾. In this specific case study, we conclude 

it is more beneficial for the OEM to reduce the repair rate than the replenishment rate.  
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Figure 2 - Sensitivity of of the total optimal cost to repair time (𝐾𝛾) and replnishment time (𝐾𝜇) 
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