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Abstract
In this paper, we modeled the real estate index options by no-arbitrage approach and obtained the partial

differential equations (PDEs) of the real estate index options. Then we proposed a novel radial basis
function (RBF) to solve the PDEs.
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INTRODUCTION

Real estate derivatives market has emerged more than 20 years. However, in the beginning,
little attention was paid to this market. Although the real estate derivatives market has displayed a
rapid development for many years, the trading volume and liquidity are not comparable to financial
derivatives because of investors’ low acceptance of the real estate derivatives as new hedging
instruments which can be partly attributed to the lack of reliable pricing models. In recent years,
the pricing of real estate derivatives has attracted more and more attention. Buttimer et al. (1997)
employed a bivariate binominal model to price the total return swap contingent on a real estate
index and interest rate. They found a positive but negligible swap spread price. Bjork and Clapham
(2002) revised the model proposed by Buttimer et al. (1997) and proved that the theoretical price
of the total return swap is equal to zero when using the no-arbitrage approach. However, all the
no-arbitrage models above ignore the fact that the real estate index is non-tradable. To solve this
pricing problem, Geltner and Fisher (2007) proposed an equilibrium model for the pricing of real
estate forwards and total return swap contracts. Fabozzi et al. (2012) considered the econometric
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properties of real estate indices and the incompleteness of real estate market by using the real estate
futures market to complete such market. Under the consumption that the market price of the real
estate index risk is known, the closed-form solutions were obtained for futures, European options
and total return swaps contingent on real estate index. In this paper, we modeled the real estate
index options by no-arbitrage approach and obtained the PDEs of the real estate index options.
Then we develop a novel approach for solving the PDEs.

The common numerical approaches for options pricing are the binomial and trinomial trees,
the finite difference (Hull and White 1990, O'Sullivan and O'Sullivan 2011), the finite element and
finite volume methods (Zvan et al. 2001, Tangman et al. 2008). In addition, many researchers also
used the meshfree methods which are effective to solve PDEs. Point interpolation method (PIM)
is the most commonly used meshfree method and has been achieved remarkable progress in recent
years. Polynomials basis function (PBF) is one of the earliest interpolation schemes. But, the
method has a problem that polynomial basis possibly cause singularity (Liu and Gu 2005). After
radial basis functions (RBFs) proposed, the shortcoming of PBFs has been improved largely. In
this paper, we combined thin plate splines (TPSs) and PBFs to construct the RBFs.

REAL ESTATE INDEX OPTION PROBLEM

Real estate indices exhibit a positive autocorrelation in the short term and a negative
autocorrelation in the long term. Therefore, we employed a mean reverting stochastic model to
measure the real estate index movement (Fabozzi et al. 2012).

dy, = [dgt’t —O(Y, —p,)]dt + odW, (1)

Where Y, =log(X,), the underlying asset X, is the real estate index, ¥, 1s the long run mean trend

of real estate indices in log scale, and @1is the mean-reversion speed parameter.

Let V(Y,,t) denote the option price, we have
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Considering that we construct a riskless hedging portfolio 7z that contains two derivatives of
different maturities Ti and T2. Let A denote the number of units the derivatives. The portfolio is

T=V,—-AV, (4)
In a very short period of time dt , the value changes of the portfolio is
drr =[ Vi, (Y1) - AV, (Y,.t) |t (5)
Under no arbitrage conditions, we have

H (Yot) =1 =A%), (Y1) (6)

where A(Y,,t) is the market price of risk.

Finally, we obtained the following PDE.
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We define following real estate index options Operator, so that we can easily describe in the
section of American options.
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European Options

For the sake of simplicity, we restrict our attention to put options, because call option can be
treated in perfect analogy. Consider a put option with maturity T and strike price E. The final
condition is

V, (X7, T) =9, (X, T)=(K=X)’ (9)
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Boundary conditions are

V, (0,t)=Kexp(-r (T -t))
limV, (X,t)=0

X —oo

American Options
We still consider a put option, the final condition is
Vo (X, T)=0, (X, T)=(K=X)"

The American option price V is not less than gp. Hence, the equation is

V>0, V=g,
(LV)(V_gp)ZO

Boundary conditions are

V,(0,t)=K
limV, (X,t)=0

TPS-PBF APPROXIMATION

(10)

(11)

(12)

(13)

The TPSs do not involve any free shape parameter. In particular, we employ the very popular

TPSs of second order, which are

R(x)=(x-x)" log(|x=x%|) i=1,2,-,n

Combined with PBFs is

u(x)=R"(x)a+P"(x)b

(14)

(15)



Where aandb are the coefficient vector of radial basis Rand polynomial basis P respectively.
The polynomial term has to satisfy an extra requirement that guarantees unique approximation
of a function, which is the following constraint.

Pa=0

We have the following system of linear equations

EHNE NN

The matrix R is non-singular, therefore

el

Equation (15) can be re-written as

u(x):[RT(x) PT(X)]G_1[0}2CD(X)U (18)

TPS-PBF for Options

Employing TPS-PBFs to approximate the real estate index option price V, we have

V(X,t)=®(X)U (19)

In order to numerically handle the unboundedness of the X-domain, we use the following change
to variables

S=1-exp(-X/L) (20)



Where L is a parameter, which can be determined by equation1—exp(—E/L)=0.7.

Then equation (7) can be rewritten as

vV 2V oV
—+A(S B(S)—-rV =0 21
5 FAS)Ig *B(S) 55T (21)

The RBF proposed in this paper is independent with time and determined the underlying asset
S Therefore, the equation(21) is continuously differentiable on § and the following equation can
be obtained.

DV = (-A(S)Py—B(S)Ps+rd)V =DV (22)

European Options

In this paper, we divided the time interval [0, T] into M points, therefore

V¥(S)=V(SkAt),k=1,2,---,M . Combined with forward and backward difference scheme

discretize the time derivative, we obtain the weight implicit scheme.

OV ! =@V +AD[ V! +(1-6)V* | (23)
LetP =[®-6AtD]and P, = [d) +(1-0) AtD] , equation (23) can rewrite as:

F)lkarl — F)zvk (24)

Due to the non-smoothness of the options’ payoff, the Crank-Nicolson scheme fails to achieve
its usual second-order accuracy. Therefore, we use the implicit Euler scheme, which is
unconditionally stable and allows us to smooth the discontinuities of the options’ payoffs.

American Options



Pricing American option is complicated because we must face a free boundary problem.
Bermudan options allow early exercises at a finite number of pre-specified exercise times which
is similar to American options. By increasing the number of exercise times we see that the
Bermudan put option pricing is closely related to the American put option pricing. So we
approximate the price of the American option with the price of a Bermudan option (Khaliq, Voss
etal. 2006, Lim, Lee et al. 2014). According to equations(11)(12)(13), we consider an option which

can be exercised not on the whole time interval [0, T], only at the datest,,t,,---,t,, .

Now, we assume that in each time interval (tt,,,),k=12,---,M the relations (11)(12)(13)

holds true. That is we consider the problems

LV =0
) (25)
Vv, (0,t) =K, )1(11)11Vp(X,t) =0

which hold true in the time intervals (t,.t,,,),k=12,---,M . So the third relations of (12) is

automatically satisfied in every time interval. The second relation of (12) is constraint only at

times t,t,,---,t,

V(X,tk):max(limV(t,X),gp(X)), k=1,2,---,M (26)

t—ty

Therefore, the solution of the American options is that

PIV k+1 — szk
(27)

V= maX(Vk,VM )
whereV " is the option prices of maturity.
NUMERICAL RESULTS
LetVepgs ( X;,0) denote the prices of using point interpolation method, V (X;,0)imply the real

prices of relative options. We defined the following error formulas
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MaxError = i:ln,lz?in‘VRpol (Xi,O)—V(Xi,O)‘ (28)

The mean square norm is

RmsError:l\/ (VRPBF,,(Xi,O)—V(Xi,O))2 (29)
nyi

European Options

Table 1 give the numerical results of put options when the strike price is 1800 and time to
maturity is 1 year, risk-free rate is 0.04. The left part of Table 2 is the result by only TPS basis
functions, and the right is obtained by the scheme of TPS-PBF. N is the number of scatter nodes
in the domain, and Cond is the condition numbers of System matrix. As we can see, the option
price can be computed with an error of order 10e-2 in the maximum norm and 10e-2 in the mean
square norm. So the levels of accuracy is very high in this paper. Some researchers may suspect
that the accuracy is not precise compared with stock options, which is understandable because they
forgot the strike price is 1800 rather than 10 (Wilmott et al. 1995, Hon 2002).

Table 1 Put option prices at different basis functions

RBPF RBPF&PBPF
N RmsError MaxError Cond/G RmsError MaxError Cond/G
50 1.7741E-02 5.4920E-01 3.0547E+08 1.1902E-02 2.6035E-01 7.1575E+09
75 6.2935E-03 2.8950E-01 2.5354E+09 4.6015E-03 1.7662E-01 6.0535E+10
100 3.4699E-03 1.9527E-01 1.1128E+10 2.8463E-03 1.3726E-01 2.6888E+11
125 2.4002E-03 1.4825E-01 3.4825E+10 2.1322E-03 1.1361E-01 8.4659E+11
150 1.9059E-03 1.2034E-01 8.8030E+10 1.7784E-03 9.7544E-02 2.1505E+12
200 1.4458E-03 8.8427E-02 3.7845E+11 1.4084E-03 7.6763E-02 9.2978E+12
250 1.2321E-03 7.1015E-02 1.1687E+12 1.2223E-03 6.3786E-02 2.8812E+13
300 1.1288E-03 5.8820E-02 2.9312E+12 1.0919E-03 5.4450E-02 7.2426E+13

It’s obviously that, with the increasing of scatter nodes, the results become more and more
precise. But with the increasing of scatter nodes the condition numbers of system matrix increase
fast, this could cause the poor precision. Compared with only TPS basis functions, the novel
method can effectively improve the results accuracy.

American Options



Let us considering American option which strike price is 1500 and time to maturity is 1 year,
the results shown in table 2. We can see the same properties with European options, that with the
number of scatter nodes increase the price tends to a stable value.

Table 2 The results of American option
American Put Options

N 1450 1475 1500 1525 1550
100 75.9123 63.3945 52.0709 43.4651 35.5482
125 75.5831 63.2658 52.5959 43.3723 35.4823
150 75.5922 62.9376 52.1276 43.1181 35.4978
175 75.7149 63.1323 52.3914 43.2718 35.5705
200 75.6216 62.9817 52.1525 43.1305 35.4760
225 75.6087 62.9762 52.3057 43.1494 35.4586
250 75.4967 62.9867 52.1631 43.1441 35.3946
275 75.5347 62.9614 52.2637 43.1216 35.4541
300 75.5386 62.9358 52.1700 43.1063 35.4352

CONCLUSIONS

In developed countries, the real estate property have reached 30% to 40% of total market assets.
However, the risk management tools available for hedging real-estate risk are very much in their
infancy and have problems ranging from illiquidity of trading to lack of theoretical development
in terms of modelling. In this paper, we advocated a suitable framework for pricing real estate
options and proposed a novel method to solve the PDEs of European and American options.

The RBPI approach developed in this paper offers several advantages over the more
conventional RBF approximation. First, the scheme combined TPSs and PBFs, which improves
the accuracy and efficiency of the result compared with the pure RBFs. Second, we replace the
original domain with a finite one, and don’t introduce unknown finite boundaries and prescribe
artificial conditions as in the previous methods. That is our innovation of variables change. Finally,
we employed a local mesh refinement strategy, which allows us to easily and effectively handle
the non-smoothness of the options’ payoff. The results shown that the option prices can be
computed with an error of order 10e-2 in the maximum norm and 10e-2 in the mean square norm,
which is very precise respect to the options of large strike price.
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