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Abstract 
In this paper, we modeled the real estate index options by no-arbitrage approach and obtained the partial 
differential equations (PDEs) of the real estate index options. Then we proposed a novel radial basis 
function (RBF) to solve the PDEs. 
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INTRODUCTION 
 

Real estate derivatives market has emerged more than 20 years. However, in the beginning, 
little attention was paid to this market. Although the real estate derivatives market has displayed a 
rapid development for many years, the trading volume and liquidity are not comparable to financial 
derivatives because of investors’ low acceptance of the real estate derivatives as new hedging 
instruments which can be partly attributed to the lack of reliable pricing models. In recent years, 
the pricing of real estate derivatives has attracted more and more attention. Buttimer et al. (1997) 
employed a bivariate binominal model to price the total return swap contingent on a real estate 
index and interest rate. They found a positive but negligible swap spread price. Bjork and Clapham 
(2002) revised the model proposed by Buttimer et al. (1997) and proved that the theoretical price 
of the total return swap is equal to zero when using the no-arbitrage approach. However, all the 
no-arbitrage models above ignore the fact that the real estate index is non-tradable. To solve this 
pricing problem, Geltner and Fisher (2007) proposed an equilibrium model for the pricing of real 
estate forwards and total return swap contracts. Fabozzi et al. (2012) considered the econometric 
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properties of real estate indices and the incompleteness of real estate market by using the real estate 
futures market to complete such market. Under the consumption that the market price of the real 
estate index risk is known, the closed-form solutions were obtained for futures, European options 
and total return swaps contingent on real estate index. In this paper, we modeled the real estate 
index options by no-arbitrage approach and obtained the PDEs of the real estate index options. 
Then we develop a novel approach for solving the PDEs. 

The common numerical approaches for options pricing are the binomial and trinomial trees, 
the finite difference (Hull and White 1990, O'Sullivan and O'Sullivan 2011), the finite element and 
finite volume methods (Zvan et al. 2001, Tangman et al. 2008). In addition, many researchers also 
used the meshfree methods which are effective to solve PDEs. Point interpolation method (PIM) 
is the most commonly used meshfree method and has been achieved remarkable progress in recent 
years. Polynomials basis function (PBF) is one of the earliest interpolation schemes. But, the 
method has a problem that polynomial basis possibly cause singularity (Liu and Gu 2005). After 
radial basis functions (RBFs) proposed, the shortcoming of PBFs has been improved largely. In 
this paper, we combined thin plate splines (TPSs) and PBFs to construct the RBFs. 
 

REAL ESTATE INDEX OPTION PROBLEM 
 

Real estate indices exhibit a positive autocorrelation in the short term and a negative 
autocorrelation in the long term. Therefore, we employed a mean reverting stochastic model to 
measure the real estate index movement (Fabozzi et al. 2012). 

 [ ( )]t
t t t t

ddY Y dt dW
dt
ψ θ ψ σ= − − +   (1) 

Where log( )t tY X= , the underlying asset tX is the real estate index, tψ is the long run mean trend 

of real estate indices in log scale, andθ is the mean-reversion speed parameter. 

Let ( ),tV Y t  denote the option price, we have 
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Hence 

 ( ) ( ), ,V t V t t
dV Y t dt Y t dW
V

μ σ= +   (3) 
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Considering that we construct a riskless hedging portfolioπ that contains two derivatives of 
different maturities T1 and T2. Let Δ denote the number of units the derivatives. The portfolio is 

 1 2V Vπ = − Δ   (4) 

In a very short period of time dt , the value changes of the portfolio is 

 ( ) ( )
1 21 2, ,V t V td V Y t V Y t dtπ μ μ = − Δ    (5) 

Under no arbitrage conditions, we have 

 ( ) ( ) ( ), , ,V t t V tY t r Y t Y tμ λ σ− =   (6) 

where ( ),tY tλ  is the market price of risk. 

Finally, we obtained the following PDE. 
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  (7) 

We define following real estate index options Operator, so that we can easily describe in the 
section of American options. 
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European Options 
 

For the sake of simplicity, we restrict our attention to put options, because call option can be 
treated in perfect analogy. Consider a put option with maturity T and strike price E. The final 
condition is 

 ( ) ( ) ( ), ,p T p TV X T g X T K X += = −   (9) 
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Boundary conditions are 

 
( ) ( )( )

( )
0, t exp

lim , 0
p
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V K r T t

V X t
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= − −

=
  (10) 

 

American Options 
 

We still consider a put option, the final condition is 

 ( ) ( ) ( ), ,p T p TV X T g X T K X += = −   (11) 

The American option price V is not less than gp. Hence, the equation is 

 ( )( )
0 ,

0
p

p

LV V g

LV V g

≥ ≥
 − =

  (12) 

Boundary conditions are 
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=
  (13) 

 

TPS-PBF APPROXIMATION 
 

The TPSs do not involve any free shape parameter. In particular, we employ the very popular 
TPSs of second order, which are 

 ( ) ( ) ( )4 log 1,2, ,i i iR x x x x x i n= − − =    (14) 

Combined with PBFs is 

 ( ) ( ) ( )T Tu x R x a P x b= +   (15) 
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Where a andb are the coefficient vector of radial basis R and polynomial basis P respectively. 
The polynomial term has to satisfy an extra requirement that guarantees unique approximation 

of a function, which is the following constraint. 

0TP a =  

We have the following system of linear equations 

 
0 0T

R P a a U
G

P b b
       

= =       
       

  (16) 

The matrix R is non-singular, therefore 

 1

0
a U

G
b

−   
=   

   
  (17) 

Equation (15) can be re-written as 

 ( ) ( ) ( ) ( )1

0
T T U

u x R x P x G x U−   = = Φ    
  (18) 

 

TPS-PBF for Options 
 

Employing TPS-PBFs to approximate the real estate index option price V, we have 

 ( ) ( ),V X t X U= Φ   (19) 

In order to numerically handle the unboundedness of the X-domain, we use the following change 
to variables 

 ( )1 expS X L= − −   (20) 
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Where L is a parameter, which can be determined by equation ( )1 exp 0.7E L− − = . 

Then equation (7) can be rewritten as 

 ( ) ( )
2

2 0V V VA S B S rV
t S S

∂ ∂ ∂+ + − =
∂ ∂ ∂

  (21) 

The RBF proposed in this paper is independent with time and determined the underlying asset 
S. Therefore, the equation(21) is continuously differentiable on S, and the following equation can 
be obtained. 

 ( ) ( )( )'
SS SV A S B S r V DVΦ = − Φ − Φ + Φ =   (22) 

 

European Options 
 

In this paper, we divided the time interval [0, T] into M points, therefore

( ) ( ), , 1,2, ,kV S V S k t k M= Δ =   . Combined with forward and backward difference scheme 

discretize the time derivative, we obtain the weight implicit scheme. 

 ( )1 1 1k k k kV V tD V Vθ θ+ + Φ = Φ + Δ + −    (23) 

Let [ ]1P tDθ= Φ − Δ and ( )2 1P tDθ= Φ + − Δ   , equation (23) can rewrite as: 

 1
1 2

k kPV PV+ =   (24) 

Due to the non-smoothness of the options’ payoff, the Crank-Nicolson scheme fails to achieve 
its usual second-order accuracy. Therefore, we use the implicit Euler scheme, which is 
unconditionally stable and allows us to smooth the discontinuities of the options’ payoffs. 
 

American Options 
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Pricing American option is complicated because we must face a free boundary problem. 
Bermudan options allow early exercises at a finite number of pre-specified exercise times which 
is similar to American options. By increasing the number of exercise times we see that the 
Bermudan put option pricing is closely related to the American put option pricing. So we 
approximate the price of the American option with the price of a Bermudan option (Khaliq, Voss 
et al. 2006, Lim, Lee et al. 2014). According to equations(11)(12)(13), we consider an option which 

can be exercised not on the whole time interval [0, T], only at the dates 1 2, , , Mt t t . 

Now, we assume that in each time interval ( )1, , 1,2, ,k kt t k M+ =   the relations (11)(12)(13) 

holds true. That is we consider the problems 

 ( ) ( )
0

0, , lim , 0p pX

LV
V t K V X t

→∞

=
 = =

  (25) 

which hold true in the time intervals ( )1, , 1,2, ,k kt t k M+ =   . So the third relations of (12) is 

automatically satisfied in every time interval. The second relation of (12) is constraint only at 

times 1 2, , , Mt t t  

 ( ) ( ) ( ), max lim , , , 1,2, ,
k

k p
t t

V X t V t X g X k M
+→

 = = 
 

   (26) 

Therefore, the solution of the American options is that 

 ( )
1

1 2

max ,

k k

k k M

PV PV

V V V

+ =
 =

  (27) 

where MV is the option prices of maturity. 

 

NUMERICAL RESULTS 
 

Let ( ),0RPBPI iV X denote the prices of using point interpolation method, ( ),0iV X imply the real 

prices of relative options. We defined the following error formulas 
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 ( ) ( )
1,2, ,
max ,0 ,0RPBPI i ii n

MaxError V X V X
=

= −


  (28) 

The mean square norm is 

 ( ) ( )( )2

1

1 ,0 ,0
n

RPBPI i i
i

RmsError V X V X
n =

= −   (29) 

 

European Options 
 

Table 1 give the numerical results of put options when the strike price is 1800 and time to 
maturity is 1 year, risk-free rate is 0.04. The left part of Table 2 is the result by only TPS basis 
functions, and the right is obtained by the scheme of TPS-PBF. N is the number of scatter nodes 
in the domain, and Cond is the condition numbers of System matrix. As we can see, the option 
price can be computed with an error of order 10e-2 in the maximum norm and 10e-2 in the mean 
square norm. So the levels of accuracy is very high in this paper. Some researchers may suspect 
that the accuracy is not precise compared with stock options, which is understandable because they 
forgot the strike price is 1800 rather than 10 (Wilmott et al. 1995, Hon 2002). 
 

Table 1 Put option prices at different basis functions 
  RBPF RBPF&PBPF 

N RmsError MaxError Cond/G RmsError MaxError Cond/G 
50 1.7741E-02 5.4920E-01 3.0547E+08 1.1902E-02 2.6035E-01 7.1575E+09 
75 6.2935E-03 2.8950E-01 2.5354E+09 4.6015E-03 1.7662E-01 6.0535E+10 

100 3.4699E-03 1.9527E-01 1.1128E+10 2.8463E-03 1.3726E-01 2.6888E+11 
125 2.4002E-03 1.4825E-01 3.4825E+10 2.1322E-03 1.1361E-01 8.4659E+11 
150 1.9059E-03 1.2034E-01 8.8030E+10 1.7784E-03 9.7544E-02 2.1505E+12 
200 1.4458E-03 8.8427E-02 3.7845E+11 1.4084E-03 7.6763E-02 9.2978E+12 
250 1.2321E-03 7.1015E-02 1.1687E+12 1.2223E-03 6.3786E-02 2.8812E+13 
300 1.1288E-03 5.8820E-02 2.9312E+12 1.0919E-03 5.4450E-02 7.2426E+13 

 
It’s obviously that, with the increasing of scatter nodes, the results become more and more 

precise. But with the increasing of scatter nodes the condition numbers of system matrix increase 
fast, this could cause the poor precision. Compared with only TPS basis functions, the novel 
method can effectively improve the results accuracy. 
 

American Options 
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Let us considering American option which strike price is 1500 and time to maturity is 1 year, 

the results shown in table 2. We can see the same properties with European options, that with the 
number of scatter nodes increase the price tends to a stable value. 
 

Table 2 The results of American option 
American Put Options 

N 1450  1475  1500  1525  1550  
100 75.9123  63.3945  52.0709  43.4651  35.5482  
125 75.5831  63.2658  52.5959  43.3723  35.4823  
150 75.5922  62.9376  52.1276  43.1181  35.4978  
175 75.7149  63.1323  52.3914  43.2718  35.5705  
200 75.6216  62.9817  52.1525  43.1305  35.4760  
225 75.6087  62.9762  52.3057  43.1494  35.4586  
250 75.4967  62.9867  52.1631  43.1441  35.3946  
275 75.5347  62.9614  52.2637  43.1216  35.4541  
300 75.5386  62.9358  52.1700  43.1063  35.4352  

 

CONCLUSIONS 
 

In developed countries, the real estate property have reached 30% to 40% of total market assets. 
However, the risk management tools available for hedging real-estate risk are very much in their 
infancy and have problems ranging from illiquidity of trading to lack of theoretical development 
in terms of modelling. In this paper, we advocated a suitable framework for pricing real estate 
options and proposed a novel method to solve the PDEs of European and American options. 

The RBPI approach developed in this paper offers several advantages over the more 
conventional RBF approximation. First, the scheme combined TPSs and PBFs, which improves 
the accuracy and efficiency of the result compared with the pure RBFs. Second, we replace the 
original domain with a finite one, and don’t introduce unknown finite boundaries and prescribe 
artificial conditions as in the previous methods. That is our innovation of variables change. Finally, 
we employed a local mesh refinement strategy, which allows us to easily and effectively handle 
the non-smoothness of the options’ payoff. The results shown that the option prices can be 
computed with an error of order 10e-2 in the maximum norm and 10e-2 in the mean square norm, 
which is very precise respect to the options of large strike price. 
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