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Abstract

We study a hand-intensive production flow-shop with variable workers’ productivity. Actual processing
times of jobs are assumed to vary depending on their position on the schedule. A mathematical model is
proposed. Computational experiments are run using different datasets in order to evaluate the power of
the model in terms of efficiency and efficacy to solve the problem.
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INTRODUCTION

Despite the industrial development and the technological resources that nowadays are
available for industries around the world (Boudreau et al. 2002), the fact is that persons are a key
element in operations systems, either as decision makers or as systems operators (Neumann and
Dul 2010). Decades ago, industry managers considered that workers were resources that could be
eventually replaced by automation (Baines and Kay 2002). Nevertheless, there are tasks and
labors that necessarily require precision, intelligence, analysis and logic own only of human
beings. Operations experts recognize, indirectly and implicitly, the importance of people as
resources, and thus, operations management textbooks have its respective human resources
chapters and sections (Heizer and Render 2007). Nevertheless, the topic is rarely mentioned in
operations management scientific journals. Alternatives for integrating both elements were
proposed more than a decade ago, however; those early initiatives never elucidated a strong
mathematical basis to incorporate human behavior within operations management paradigm
(Lodree et al. 2009). Therefore, there is a significant gap between the human factor and
operations management. Human behavior influence in operations systems has been
underestimated (Bentefouet and Nembhard 2013). Companies are involved in a dominant logic
in which it is believed that the human factor does not have a significant impact in the
achievement of its strategic objectives (Prahalad 2004).



The gap mentioned in the last paragraph, trigger in a very complex situation: generally, when
a human resources analysis is developed in a productive environment, many assumptions and
critical simplifications are done about characteristics and behavior of people: workers have a
predictable behavior or their performance is constant and there is no chance for them to feel
fatigue or tired (Boudreau et al. 2002). In such a context, the aim of the current paper is to
address the problem of production scheduling in a hand-intensive manufacturing system. The
configuration under study is a flow line (or flow shop) in which workers productivity may be
affected by different situations such as: heavy loads lifting, repetitive tasks, hard weather
conditions, sentimental or psychological issues, etc. As explained in detail in the next section, the
problem can be modeled as processing times deterioration scheduling problem.

In formal terms, we consider the problem of having m workers i = 1,...,m with 100%
production rate at initial time of scheduling (production horizon). Those workers must process n
independent jobs j = 1, ...,n. Each job must be processed by all workers, it means the workers
are organized sequentially. The sequence in which the jobs will be processed must be the same
for all workers (permutation flow shop). Each worker can process one job at a given time and
interruption during processing of a job is not allowed. As traditionally defined (Pinedo 2012), the
processing time p;; represents the basic time the job j needs to be processed by worker i. As
previously explained, the processing time of job j will increase in function of its position on the
sequence: processing time of job j scheduled in the &A™ position is computed as Dix = Pijk®,

where a is the deteriorating rate. The objective is to minimize the completion of all jobs or
makespan (Cmax). Following the standard notation in Scheduling Theory, the problem under
study is denoted as Fm|p; ;, = p; ;7*|Cmax.

Our objective is to formulate a mathematical model to test the efficiency and efficacy for
different problem sizes. The rest of this paper is organized as follows. We first present a review
of related literature. Afterwards, the proposed mathematical model is explained in detail,
followed by the results of the computational experiments. The paper ends by presenting some
concluding remarks and opportunities for future research.

RELATED LITERATURE

According to the academic literature, flow shop scheduling problems can be classified as
either “permutation flow-shop” or “non-permutation flow shops”. In the former environment, the
execution sequence of all jobs is the same at all manufacturing resources, while in the latter
environment, the execution sequence of jobs is not necessarily the same. When considering
workers, the scheduling problem has been traditionally classified in three main problems (Ernst
et al. 2004):

* Day-off Scheduling: The objective is to determine, for each worker, work and off-work
days depending on the time scheduling horizon (Alfares 2002)

* Shift Scheduling: The aim is to select the best set of shifts between a known number of
workers in a single day or in a time horizon previously defined (Aykin 2000)

* Tour Scheduling: Day-off scheduling and shift scheduling problems are integrated,
allowing to determine off-days for workers and the best shifts for their working days
(Goodale and Thompson, 2004)

A full description of worker scheduling and allocation issues can be found in (Ernst et al.
2004). An extensive literature review about the Tour Scheduling Problem was developed in
(Alfares 2004). The importance of integrating human factors in personnel scheduling and



allocation (Operations Management) has been studied in the works of Neumann and Dul (2010)
and Boudreau et al. (2002).

When dealing with worker scheduling problems, skills and qualifications act as restrictive
filters on who can perform a task (Moreno-Camacho and Montoya-Torres 2015). We must
describe two cases mainly. In the first case, all workers have the same abilities, which means that
anyone can execute a task. In the second case, workers have different abilities, then, the
challenge is to match workers abilities with available tasks, reaching the lower cost and/or the
higher productivity levels (Ernst et al. 2004).

Commonly, academic literature on workforce scheduling considers that processing times are
deterministic (i.e., do not vary over time) (Brucker 2007). Nonetheless, for nowadays, industrial
environments, processing times of tasks can change with ease. Psychological and sentimental
issues, fatigue, and other elements previously mentioned may, and very often do, bring on the
increase in processing times of jobs. According to the well-known scheduling models studied in
the literature, the problem we are analyzing can be modeled as a scheduling problem with
deteriorating processing times of jobs.

Time- and position-dependent processing times problems have been studied significantly.
(Gawiejnowicz 2008) developed an extensive literature review, which includes various
scheduling models and problems which take in to account deteriorating job processing times.
Recent publications have considered the deterioration of processing times for the two-machine
problem (e.g., Zhao and Tang 2012, Wang and Liu 2009), for the three-machine environment
(e.g., Wang and Wang 2013, Wang et al. 2010) and for m-machines problem (e.g., Wang et al.
2011, Lee et al. 2009). Few of the analyzed publications formulate mathematical models or
resolution algorithms, the most of those works are focused on theoretical analysis (e.g., types of
deteriorating functions for processing times (Cheng et al. 2004) and problems complexity
demonstrations (Thornblad and Patriksson 2011)). The efficiency of mathematical models is
relatively unexplored (Moreno-Camacho and Montoya-Torres 2015).

MIXED-INTEGER PROGRAMMING MODEL

This section presents the detailed algebraic formulation of the mathematical model proposed
to address the problem under study. Our model is based on the MIP model proposed in (Guéret et
al. 2000) which is a corrected version of the model formulated in (Pinedo 2012). We adapted the
model to include position-dependent processing times. It means that processing times of jobs are
assumed to vary depending on their position on the schedule, through a deterioration factor,
noted as a, which can vary between 0 and 1.

Three decision variables are defined. Binary variable xj, = 1 if job j is processed in the Kt
position, and 0 otherwise. The other variables required to run the model are defined as integer
variables: ey, represents the idle time in the worker i between the processing of jobs in the k™
and the (k + 1) positions; and a;;, representing the waiting time of the job in the position k
between workers i and i + 1.

Let Z be the objective function. The aim is to minimize the makespan or total completion time
of all jobs, noted as Cmax. The Mixed-Integer Programming (MIP) model is defined as follows:
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Constraint (1) represents the objective function. It is composed by three mathematical
expressions. The first is the total time that the job j selected in the position k = 1, elapses
arriving to the worker m; the second expression is the sum of processing times of j jobs executed
by worker m; and the third expression is the sum of idle times between the j jobs processed by
worker m. Constraints (2) specify that for each job only one position must be assigned.
Constraints (3) ensure that, for each position, only one job must be assigned. Constraints (4) and
(5) guarantee that e;;, and a;; variables are non-negative. Constraints (6) forces to be zero any
idle time e for the first worker. Constraints (7) force to be zero any waiting time a for the first
position in the schedule (i = 1). Constraints (8) describe the relation between jobs in position k
and k + 1 in function of: idle times between those jobs, waiting times between m — 1 workers
and processing times. Constraints (9) define decision variable xj; as binary. Finally, Constraints
(10) define upper and lower boundaries for the deteriorating factor .

COMPUTATIONAL EXPERIMENTS

Description of Datasets

In order to test and analyze performance of the proposed model, computational experiments
were conducted on a PC AMD Phenom N-640 2.9 Hz and 4,00 GB of RAM memory. The model
was programmed using GAMS and solved using MIP solver ILOG CPLEX. To prevent



excessive computational time, the solver’s computation time limit was restricted to 1000
seconds. All datasets giving the number of jobs, their processing times, and the number of
workers were taken from the literature, available at: http://soa.iti.es/instancias-problemas and
named as “Benchmarks for flow shops and due dates”. Problems with 2, 3, 5 and 10 workers
were considered; to process a total of 25, 50, 75, 100, 150, 200, 250, 300 and 350 jobs. Three
values for the deteriorating factor (a) were defined: 0 (there is no change in initial processing
times), 0.2 and 0.8. Overall, a total of 108 instances were employed in the computational
experiment. We next explain the results obtained as shown in Table 1.

Table 1. Results of Computational Experiments

Deterioration Rate (a)
0 0.2 0.8
Number of | Number Cmax Relative CPU Cmax Relative CPU Cmax Relative CPU
Workers of Jobs Gap time (s) Gap time (s) Gap time (s)
25 1133 0 0.17 1635 0 0.31 5726 0 0.39
50 2648 0 0.56 4142 0 0.89 22997 0 0.88
75 3947 0 1.66 7244 0 0.72 51686 0 0.58
100 5327 0 1.13 10350 0 1.13 88302 0 1.19
2 150 8126 0 6.38 17134 0 3.02 188444 0 2.65
200 10256 0 8.76 20442 0 5.93 235614 0 5.86
250 13102 0 54.71 27254 0 9.54 359351 0 12.53
300 15526 0 84.32 34261 0 24.67 521242 0 22.31
350 17718 0 49.14 41296 0 36.19 699125 0 31.39
25 1216 0 0.38 1812 0 0.13 6827 0 0.13
50 2476 0 1.27 4203 0 3 23753 0 4.19
75 3948 0 2.34 6737 0 1.34 43518 0 1.05
100 5328 0 6.63 9692 0 14.19 75522 0 213.5
3 150 8127 0 36.7 15916 0 15.06 159578 0 1000*
200 10266 0 139.23 | 22366 0 24.19 278903 0 144.87
250 13112 0 526.37 | 29558 0 37.14 418975 0 61.05
300 16105 0.04 1000* | 36496 0 113.21 | 579183 0 40.46
350 19013 | 0.0631 1000* | 44039 0 171.14 | 779959 0 80.73
25 1288 0 276.78 1915 0 137.62 6467 0 11.31
50 2547 0.0079 1000 4208 0.009 1000* 21561 0.0016 1000*
75 3985 0 131.18 7128 0.0002 1000* 49125 0.0007 1000*
100 5365 0 26.73 10179 0 35.7 84407 0.0003 1000*
5 150 8164 0 103.9 16472 0 36.56 172540 | 0.0002 1000*
200 11238 | 0.0835 1000* | 22714 | 0.0042 1000* | 284995 | 0.0003 1000*
250 13634 | 0.0358 1000* | 29314 | 0.0019 1000* | 412141 | 0.0002 1000*
300 16378 | 0.0493 1000* | 36366 | 0.0064 1000* | 565854 | 0.0002 1000*
350 - 1 1000* | 43010 | 0.0088 1000* | 724027 | 0.0002 1000*
25 1761 0.0368 1000* 2482 0.0317 1000* 8109 0.0032 1000*
50 3116 0.0183 1000* 4778 0.0217 1000* 22504 0.0043 1000*
75 4538 0.0134 1000* 7958 0.0369 1000* 50376 0.0042 1000*
100 5899 0.0175 1000* 11001 0.034 1000* 84892 0.0034 1000*
10 150 - 1 1000* 16907 | 0.0367 1000* 162462 | 0.0024 1000*
200 12285 | 0.1056 1000* | 23518 | 0.0174 1000* - 1 1000*
250 - 1 1000* - 1 1000* | 419041 | 0.0006 1000*
300 - 1 1000* - 1 1000* | 579867 | 0.0004 1000*
350 - 1 1000* - 1 1000* - 1 1000*




Results

The analysis of results is carried out over the combinations of workers and jobs, starting with
two machines and increasing until ten. All cases are presented in Table 1. The first two columns
indicate the number of workers and the number of jobs. The upper row represents the three
deteriorating rates considered. The column “Cmax” indicates the value of the objective function
(makespan). Column “Relative gap” corresponds to the percentage deviation between the best
integer solution found by GAMS solver at the end of the running time of 1000 seconds and the
value of the bound defined by the software (if relative gap is zero, it means, the solver found the
optimal solution). Finally, computation times are reported in seconds in “CPU time (s)” columns.

For the two-worker instances, the model obtained solutions within the time limit and found
the optimal solution for 100% of datasets evaluated. For the instances with three workers, the
model obtained solutions within the time limit for all datasets. However, optimal solution was
found in 25 (out of 27) instances evaluated (this corresponds to the 92.5% of datasets). For the
remaining instances, no optimal solution was reached but very high quality solutions were
achieved (average relative gap lower than 0.055).

For the instances with five workers, the model obtained solutions within the time limit in 26
(out of 27) datasets. However, the solver found the optimal solution for only 8 instances
evaluated, corresponding to the 30% of datasets. For the remaining 70%, the solver found high
quality solutions (relative gap lower or equal than 0.09). Finally, the 10-worker datasets were
hard to solve; the solver did not find a solution within the time limit for the 33% of the scenarios.
No optimal solutions were found for the remaining 67%, but the solver achieved high quality
solutions (equal or lower than 0.04). We observe that for large-sized instances, the percentage of
optimal solutions found decrease and the number of solutions found in limit time also decrease.

We observe that the performance of the model varies with the number of workers and the
deteriorating job rate (see Figure 1). For instances with two and three workers, the higher the
deteriorating job rate, the lower the computation time. Nevertheless, for instances with three
workers, computation time increase when deteriorating job rate increase. All this allows
concluding that the complexity of the model increases while the size of the instance increases;
this statement is supported by the fact that when m = 10 workers the computation time exceeded
the limit of 1000 seconds.

Computation Time

1000
800
@ m=2
2 600 m=3
2 400 m=3
@) m=10
200
0
0 0,2 0,4 0,6 0,8 1

Deteriorating Job Rate

Figure I — Relation between computational time and deteriorating job rates for 2, 3, 5, and 10 workers.



CONCLUSIONS AND PERSPECTIVES

This paper considered a permutation flowshop scheduling problem for m-workers in which
processing times of jobs are dependent on the position in the sequence. A mixed-integer
programming (MIP) model was proposed. Computational results showed that the model is able
to find optimal solutions in reasonable computation time for small-sized instances. However, for
large-sized instances, there is no evidence that the model is able to find optimal values before
reaching the upper running time limit; hence the best integer solution is reported. Further
research could now be focused on developing cuts to speed-up the resolution of the mathematical
model and even on the design of heuristic or meta-heuristic algorithms allowing an efficient
solution for large-sized problem datasets.
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