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Abstract 

This paper presents an adaptive genetic algorithm for solving a multimode resource-constrained 

project scheduling problem with discounted cash flows for minimizing costs. The genetic 

algorithm operates on two crossovers adaptively. A mathematical model is developed and 

detailed computational experiments are performed on a standard problem set to evaluate the 

performance. 
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Introduction 

Resource constrained project scheduling (RCPSP) is concerned with scheduling of activities in a 

project under resource and precedence constraints. RCPSP is traditionally considered an NP hard 

optimization problem (Blazewicz et al., 1983). In this paper, an adaptive genetic algorithm 

(AGA) is used to address MRCPSP with discounted cash flows (MRCPSPDCF) with cost 

minimization as objective.  The solution procedure assigns mode and start time to all activities in 

a project such that the project cost is minimized. The 0–1 integer programming mathematical 

formulation based on Talbot (1982) is presented for the problem.  

Literature review 

This problem was introduced by (Mohring 1984) as the resource investment problem and an 

exact procedure based on graph algorithms is presented. Other exact procedures are proposed by 

(Demeulemeester 1995) and (Rodrigues and Yamashita 2010). (Demeulemeester 1995) 

developed an exact algorithm for the RACP. It is based on iterative solutions for the RCPSP 

which is based on the branch-and-bound algorithm of (Demeulemeester and Herroelen 1992). 

The algorithm tries to schedule based on the cheapest efficient point by iteratively altering the 

resources corresponding to deadline. (Rodrigues and Yamashita 2010) modified the algorithm 

developed by Demeulemeester (1995), by combining heuristic rules for initial solution, so that 

solution space is reduced. He presented new bounds for the branching scheme that reduced the 

number of sub problem. Langrangean relaxation and column generation technique for this 

problem and developed two lower bounds for the resource availability cost problem (RACP) 

(Drexl and Kimms 2001). RIP with MRCPSP is solved using due date constraints (activity slack) 

and resource usage (resource investment) and are used to select and schedule tasks (Hsu and Kim 

2005). A multi-start heuristic based on the scatter search methodology which searches the 

solution space using solutions generated by different heuristics is proposed by (Yamashita et al. 
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2006). A genetic algorithm for solving the resource investment problem with tardiness as penalty 

is studied by (Shahdrok and Kianfer 2007) 

 

(Ranjbar et al. 2008) introduced the resource trade-off problem with multiple resources. The 

authors present a new hybrid meta heuristic algorithm based on scatter search and path re-linking 

methods. In the SS algorithm, they use path re-linking concepts to generate children from parent 

solutions, in the form of a new combination method. They also incorporate new strategies for 

diversification and intensification to enhance the search, in the form of local search and forward–

backward scheduling, based on so-called reverse schedules, with the activity dependencies 

reversed. (Peng and Wang 2009) solved multi-mode resource-constrained DTCTP model (MRC-

DTCTP) using GA in which activity crashing is used to reduce the cost. The bounds for the 

activity cost considered. (Van Peteghem and Vanhoucke 2011) presented an invasive weed 

optimization algorithm.  

Model development 

The MRCPSPDCF can be formulated as follows. We consider a project consisting of 

precedence-related set A = {1, 2, j….J} of J activities. We consider additional activities j = 0 

representing the only source and j = J + 1 representing unique sink activity of the network; 

activities are topologically labelled such that the predecessors of the activity j will always be 

numbered less than the activity number j. We define the set of immediate predecessor and 

successor activities for an activity j as 𝒫j and 𝒮j respectively. Precedence relations among 

activities require that activity j cannot be started unless activity i ∈ 𝒫j is not over. All activities 

except source and sink activity need resources for processing. Activities may use renewable and 

or non-renewable resources. The horizon of the project is sum of durations of all the activities, 

with longest mode, in the project.  

The set of renewable resources is given by ℛ𝑘
𝑟  where k = {1,2,….K } and the set of non-

renewable resources is given by 𝑅𝑙
𝑛

 where l = {1,2,3…L }. Per-period availability of renewable 

resource, of type k, is given byℛ𝑘
𝑎𝑟. The total availability of non-renewable resource of type l for 

the entire project duration is given byℛ𝑙
𝑎𝑛.  

Depending on the amount of resources consumed, an activity j may be processed in more than 

one way (each way referred to as a mode) and a set of all such modes of execution for an activity 

j is denoted by Mj ={1,2,…mj,…Mj }. Activity j, performed in mode m ∈ Mj, has duration djm.  

Activity performed in mode m requires ℛ𝑗𝑚𝑘
𝑟 units of k-type renewable resources per unit time 

and ℛ𝑗𝑚𝑙
𝑛 units of l-type non-renewable resources. 

Notations 
𝐶𝑟𝑘

 Per period cost of using one unit of renewable resource ℛ𝑘
𝑟 of type k.  

𝐶𝑛𝑟𝑙
  Per unit cost of non-renewable resource ℛ𝑙

𝑛of type l.  

D The dead line of the project and is taken as two third of the horizon of the project.  

x  Overhead cost per day. 

γ  The cost of the capital. 

Y  Bonus rate per day. 

Z  Penalty cost per day.   

 𝑒𝑠𝑗    The earliest start time of the activity j 

𝑙𝑠𝑗 The latest start time of the activity j 

𝑠𝑗 The start time of the activity j 
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𝑓𝑗 The finish time of the activity j 

𝑐𝑗
𝑓
 Fixed cost associated with activity j 

𝐶𝑗
𝑣  Variable cost associated with activity j 

 

Considering the time value of money, the present value of future cost of activity execution can 

be calculated by multiplying it with the discounting factor given by:  

Discounting factor = 
1

(1+𝛾)
𝑠𝑗

 where sj is the start time of the activity j. 

The cost associated with an activity j can be stated as: 

𝑐𝑗
𝑓

 =  𝑥 ∗ 𝑑𝑗𝑚 
  

𝐶𝑗
𝑣 = (∑ (ℛ𝑗𝑚𝑘

𝑟
)(𝑑𝑗𝑚 

)(𝐶𝑟𝑘
)𝐾

𝑘=1 + ∑ (ℛ𝑗𝑚𝑙
𝑛

∗ 𝐶𝑛𝑟𝑙
)𝐿

𝑙=1 )  

The discounted value of total cost of execution of activity j is given by 

𝑐𝑗
𝑇 =

  𝑐𝑗
𝑓

+ 𝑐𝑗
𝑣

(1 + 𝛾)𝑠𝑗
 

The penalty and bonus arises, depending on the deadline overrun of the project. If 𝑓𝐽 is the finish 

time of the terminal activity of the project, the bonus and penalty is estimated as 

 The bonus amount B is given by 

𝐵 =
(𝐷−𝑓𝑗)∗𝑦

(1+𝛾)
𝑓𝑗

  𝑖𝑓 𝐷 > 𝑓𝐽  

 The penalty amount is given by  

𝑃 =  
(𝑓𝐽−𝐷)∗𝑍

(1+𝛾)
𝑓𝐽

  𝑖𝑓 𝑓𝐽 > 𝐷   

Mathematically, this model can be formulated by defining 0–1 variables𝑥𝑗𝑚𝑡. 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 {∑ ∑ 𝑐𝑗
𝑇

𝑙𝑠𝑗

𝑡 = 𝑒𝑠𝑗

𝑥𝑗𝑚𝑡 

𝐽

𝑗=1

∓  𝐵(𝑃)}                                                                                                     (1) 

Subject to: 

∑ ∑ 𝑥𝑗𝑚𝑡

𝑙𝑠𝑗

𝑡=𝑒𝑠𝑗

= 1     𝑗 = 1,2, … . . , 𝐽                                                                                                                                 (2)

𝑀𝑗

𝑚=1

 

∑ ∑ (𝑡 + 𝑑𝑗𝑚)𝑥𝑗𝑚𝑡 ≤ 
𝑙𝑠𝑗

𝑡=𝑒𝑠𝑗

𝑀𝑗

𝑚=1

∑ ∑ 𝑡𝑥𝑖𝑚𝑡

𝑙𝑠𝑖

𝑡=𝑒𝑠𝑖

𝑀

𝑚=1

          𝑗 ∈  𝑝𝑖                                                                                      (3) 

∑ ∑ ℛ𝑗𝑚𝑘
𝑟

𝑀𝑗

𝑚=1

𝐽

𝑗=1

  ∑ 𝑥𝑗𝑚𝑡

min{𝑡−1,𝑙𝑠𝑗}

𝑠=𝑚𝑎𝑥{𝑡−𝑑𝑗𝑚 ,𝑒𝑠𝑗}
≤  ℛ𝑘

𝑎𝑟
      𝑘 = 1,2, … , 𝐾; 𝑡 = 1,2, … . , 𝐷.                                            (4) 

∑ ∑ ℛ𝑗𝑚𝑙
𝑛

𝑀𝑗

𝑚=1

𝐽

𝑗=1

  ∑ 𝑥𝑗𝑚𝑡

𝑙𝑠𝑗

𝑠=𝑒𝑠𝑗

≤  𝑅𝑙
𝑛

      𝑙 = 1,2, … , 𝐿;                                                                                   (5) 

𝑓𝐽  ≤ 𝐷 ;                                                                                                                                                                                    (6) 

 𝑥𝑗𝑚𝑡 = {0,1}     𝑗 = 1,2, … . . , 𝐽; 𝑚 = 1,2, … , 𝑀𝑗; 𝑡 =  𝑒𝑠𝑗 , … , 𝑙𝑠𝑗 .                                                                                (7) 

 

We need to determine the execution mode and its starting time. The decision variable of the 

problem is as follows: 

𝑥𝑗𝑚𝑡 = {
1, 𝑖𝑓 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑗 𝑖𝑠 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑖𝑛 𝑚𝑜𝑑𝑒 𝑚 𝑎𝑛𝑑 𝑠𝑡𝑎𝑟𝑡𝑒𝑑 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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The objective function (1) is to minimize the cost of the project. It is assumed that the dummy 

start node and dummy end node can only be processed in a single mode with duration equal to 

zero. Equations (2) to (5) represent the constraints of the problem. Equation (2) assures that each 

activity is assigned exactly one mode and exactly one start time. Equation (3) represents the 

precedence constraints, i.e., the start time of the j is always greater than or equal to the finish 

time of its predecessor activity i, which belongs to predecessor set 𝒫j of j. Equation (4) checks 

the per-period renewable resource violation by the activity that is in progress at time t. Equation 

(5) represents the constraints on the non-renewable resources. It ensures that total requirement of 

non-renewable resources by all the activities is less than or equal to the available resources. 

Equation (6) sets the deadline of the completion of the project. Finally, Equation (7) imposes 

binary values on the decision variables. 

Genetic algorithm 

The problem data is pre-processed using data pre-processing procedure suggested by Sprecher et 

al (1997). The pre-processing procedure removes inefficient, non-executable modes of activities 

and redundant non-renewable resources from the problem input data. GA works on this 

processed data. The project information is presented in the form of solution representation and 

genetic operators work on these representations. These representations are decoded back using 

decoding procedure i.e. schedule generation schemes (SGS).  We used solution representation as 

shown in the figure 3.  

 
Figure 3 Solution representation 

Initial population 

The initial population is generated using two heuristic rules viz. latest finish time (LFT) and 

shortest processing time (SPT).The solutions in the population are decoded to schedules using 

serial schedule generation scheme (SSGS). We used the rank selection strategy for selecting 

individuals for the crossover operation. In rank selection methods, the individual solutions 

receive their rank from the fitness values.  

Fitness computation  

Since the objective is cost minimization, the algorithm is driven by the cost of the schedule. 

Therefore, the schedule cost is used as a fitness score of every chromosome in the population. By 

relaxing non-renewable resource constraints, solutions with infeasibility with respect to non-

renewable resources are allowed to exist in the population so that high-quality genes from such 

schedules are captured during the crossover and mutation process. Such infeasible individuals 

are penalized in fitness function. The penalty is in terms of the cost associated with violation of 

non-renewable resource. The fitness function for evaluation of fitness score with penalty is given 

by equation (8). Fitness is computed for each individual depending on whether an individual 
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solution is feasible or infeasible. The penalty cost is not discounted. Thus, the fitness value of a 

feasible individual is always less than that of infeasible individuals. 

𝒇(𝒙) =  {

{∑ (𝑇𝐶𝑗)𝐽
𝑗=1  }                                                                          𝑖𝑓 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒

{∑ (𝑇𝐶𝑗)𝐽
𝑗=1  } + ∑ max {0, (∑ 𝑟𝑗𝑚𝑙

𝑛𝑟 − 𝒜𝒩ℛ1
𝐽
𝑗=1 ) ∗ 𝑐𝑟𝑙

𝑛𝑟    }𝐿
𝑙∈𝑁𝑅

   

   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                    (𝟖)  

Cross over  

Crossover is reproduction process in which two chromosomes combine together to produce two 

offspring and transmit the genetic characteristics. The crossover design should achieve balance 

of high mean fitness and diversity of population, which is often difficult with a single crossover 

operator. Therefore we used two crossover operators viz three point and multi point forward 

backward crossover operator. These operators operate adaptively on same population. Three 

point crossover operator introduces diversity while multi point forward backward operator raises 

average fitness of the population.  

Three point crossover:  

In three point crossover method, we generate three integer random numbers, say p, q and r, from 

[1, J] such that 1≤ p < J/3, J/3≤ q < 2J/3 and 2J/3≤ r < J. where J is equal to number of activities 

in project. They are used as crossover points for three point crossover method. The fractional 

values are rounded to next higher integer values. The generation of son and daughter is explained 

in the pseudo algorithm shown in fig 2.  Let  𝐽𝑖
𝑠 , 𝐽𝑖

𝑑 , 𝐽𝑥
𝑓

, 𝐽𝑦
𝑚  represent the activity from the son, 

daughter, father and mother schedule respectively.  mimk

s , mimk

d , mxmk

f , mymk

m   represent the 

modes of the activity belonging to son, daughter, father and mother schedule respectively. The 

generation of son and daughter is explained in the pseudo-algorithm shown in Fig 2. 

𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒊𝒐𝒏 𝒐𝒇 𝒔𝒐𝒏  
 

𝒇𝒐𝒓 𝒊 = 𝟏  𝒕𝒐 𝒑 𝒅𝒐 

𝑱𝒊
𝒔 = 𝑱𝒙

𝒇
 

𝐦𝐢𝐦𝐤

𝐬 = 𝐦𝐱𝐦𝐤
𝐟    

𝒇𝒐𝒓 𝒊 = 𝒑 + 𝟏  𝒕𝒐 𝒒 𝒅𝒐 

𝒚 = 𝒍𝒐𝒘𝒆𝒔𝒕 𝒊𝒏𝒅𝒆𝒙 | 𝟏 ≤  𝒚 ≤ 𝑱 𝒋𝒚
𝒎 ∉  {𝒋𝟏

𝒔 , … . . , 𝒋𝒑
𝒔   } 

 𝑱𝒊
𝒔 = 𝑱𝒚

𝒎  

𝐦𝐢𝐦𝐤

𝐬 = 𝐦𝐲𝐦𝐤
𝐦    

𝒇𝒐𝒓 𝒊 = 𝒒 + 𝟏  𝒕𝒐 𝒓 𝒅𝒐 

𝒙 = 𝒍𝒐𝒘𝒆𝒔𝒕 𝒊𝒏𝒅𝒆𝒙 | 𝟏 ≤  𝒙 ≤ 𝑱   𝒋𝒙
𝒇

∉  {𝒋𝟏
𝒔 , … . . , 𝒋𝒒

𝒔   } 

𝑱𝒊
𝒔 = 𝑱𝒙

𝒇
 

𝐦𝐢𝐦𝐤

𝐬 = 𝐦𝐱𝐦𝐤
𝐟  

𝒇𝒐𝒓 𝒊 = 𝒓 + 𝟏  𝒕𝒐 𝑱 𝒅𝒐 

𝒚 = 𝒍𝒐𝒘𝒆𝒔𝒕 𝒊𝒏𝒅𝒆𝒙 | 𝟏 ≤  𝒚 ≤ 𝑱 𝒋𝒚
𝒎 ∉  {𝒋𝟏

𝒔 , … . . , 𝒋𝒓
𝒔   } 

𝑱𝒊
𝒔 = 𝑱𝒚

𝒎 

𝐦𝐢𝐦𝐤

𝐬 = 𝐦𝐲𝐦𝐤
𝐦  

𝑱𝒋+𝟏    
𝒔 = 𝒋𝒋+𝟏

𝒇
 

𝒔𝒄𝒉𝒆𝒅𝒖𝒍𝒊𝒏𝒈 𝒎𝒐𝒅𝒆 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒐𝒏 𝒊𝒔  
𝒄𝒐𝒑𝒊𝒆𝒅 𝒇𝒓𝒐𝒎 𝒇𝒂𝒕𝒉𝒆𝒓   

𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒊𝒐𝒏 𝒐𝒇 𝑫𝒂𝒖𝒈𝒉𝒕𝒆𝒓 

  
𝒇𝒐𝒓 𝒊 = 𝟏  𝒕𝒐 𝒑 𝒅𝒐 

𝑱𝒊
𝒅 = 𝑱𝒚

𝒎 

𝐦𝐢𝐦𝐤

𝐝 = 𝐦𝐲𝐦𝐤
𝐦    

𝒇𝒐𝒓 𝒊 = 𝒑 + 𝟏  𝒕𝒐 𝒒 𝒅𝒐 

𝒙 = 𝒍𝒐𝒘𝒆𝒔𝒕 𝒊𝒏𝒅𝒆𝒙 |𝟏 ≤ 𝒙 ≤ 𝑱 𝒋𝒙
𝒇

∉  {𝒋𝟏
𝒅, … . . , 𝒋𝒑

𝒅  } 

 𝑱𝒊
𝒅 = 𝑱𝒙

𝒇
  

𝐦𝐢𝐦𝐤

𝐝 = 𝐦𝐱𝐦𝐤
𝐟    

𝒇𝒐𝒓 𝒊 = 𝒒 + 𝟏  𝒕𝒐 𝒓 𝒅𝒐 

𝒚 = 𝒍𝒐𝒘𝒆𝒔𝒕 𝒊𝒏𝒅𝒆𝒙 | 𝟏 ≤  𝒚 ≤ 𝑱 𝒋𝒚
𝒎 ∉  {𝒋𝟏

𝒅, … . . , 𝒋𝒒
𝒅  } 

𝑱𝒊
𝒅 = 𝑱𝒚

𝒎 

𝐦𝐢𝐦𝐤

𝐬 = 𝐦𝐲𝐦𝐤
𝐦  

𝒇𝒐𝒓 𝒊 = 𝒓 + 𝟏  𝒕𝒐 𝑱 𝒅𝒐 

𝒙 = 𝒍𝒐𝒘𝒆𝒔𝒕 𝒊𝒏𝒅𝒆𝒙 | 𝟏 ≤  𝒙 ≤ 𝑱 𝒋𝒙
𝒇

∉  {𝒋𝟏
𝒅, … . . , 𝒋𝒓

𝒅  } 

𝑱𝒊
𝒅 = 𝑱𝒙

𝒇
 

𝐦𝐢𝐦𝐤

𝐝 = 𝐦𝐱𝐦𝐤
𝐟  

𝑱𝒋+𝟏
𝒅 = 𝒋𝒋+𝟏

𝒎   

𝒔𝒄𝒉𝒆𝒅𝒖𝒍𝒊𝒏𝒈 𝒎𝒐𝒅𝒆 𝒐𝒇 𝒕𝒉𝒆 𝒅𝒂𝒖𝒈𝒉𝒕𝒆𝒓 𝒊𝒔 

 𝒄𝒐𝒑𝒊𝒆𝒅 𝒇𝒓𝒐𝒎 𝒎𝒐𝒕𝒉𝒆𝒓 
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Figure 1Pseudo code for Three point crossover 

 

Multi point forward-backward crossover 

The generation of son and daughter is explained in the pseudo-algorithm shown in Fig 4. The 

procedure ensures precedence relationship among the activities. Fig 5 describes the procedure for 

generation of son and daughter for the example network shown in Fig 1.  

𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒊𝒐𝒏 𝒐𝒇 𝒔𝒐𝒏  
𝒇𝒐𝒓 𝒊 = 𝟏  𝒕𝒐 𝒏 𝒅𝒐 

𝑱𝒊
𝒔 = 𝑱𝒙

𝒇
 

𝐦𝐢𝐦𝐤

𝐬 = 𝐦𝐱𝐦𝐤
𝐟    

such that   

x = 𝒍𝒐𝒘𝒆𝒔𝒕 𝒊𝒏𝒅𝒆𝒙 |𝟏 ≤  𝒙 ≤ 𝑱 𝒋𝒙
𝒇

∉ {𝒋𝟏
𝒔 , … , 𝒋𝒏

𝒔   } 

𝒚 = (𝒏 − (𝒊 − 𝟏)) 

 𝑱𝒏−(𝒊−𝟏)
𝒔 = 𝑱𝒚

𝒎  

𝐦(𝒏−(𝒊−𝟏))𝐦𝐤

𝐬 = 𝐦𝒚𝐦𝐤
𝐦    

such that  

y = 𝒉𝒊𝒈𝒉𝒆𝒔𝒕 𝒊𝒏𝒅𝒆𝒙 |𝟏 ≤ 𝒚 ≤ 𝑱 𝒋𝒚
𝒎 ∉  {𝒋𝟏

𝒔 , , 𝒋𝒏
𝒔   } 

𝑱𝒋+𝟏
𝒔 = 𝒋𝒋+𝟏

𝒇
 

𝒔𝒄𝒉𝒆𝒅𝒖𝒍𝒊𝒏𝒈 𝒎𝒐𝒅𝒆 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒐𝒏 𝒊𝒔 𝒄𝒐𝒑𝒊𝒆𝒅 𝒇𝒓𝒐𝒎  
𝒇𝒂𝒕𝒉𝒆𝒓   

𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒊𝒐𝒏 𝒐𝒇 𝒅𝒂𝒖𝒈𝒉𝒕𝒆𝒓  
𝒇𝒐𝒓 𝒊 = 𝟏  𝒕𝒐 𝒏 𝒅𝒐 

𝑱𝒊
𝒅 = 𝑱𝒚

𝒎 

𝐦𝐢𝐦𝐤

𝐝 = 𝐦𝐲𝐦𝐤
𝐦    

such that  

𝒚 = 𝒍𝒐𝒘𝒆𝒔𝒕 𝒊𝒏𝒅𝒆𝒙| 𝟏 ≤ 𝒚 ≤ 𝑱 𝒋𝒚
𝒎 ∉  {𝒋𝟏

𝒅, . . , 𝒋𝒏
𝒅  } 

𝒙 = (𝒏 − (𝒊 − 𝟏)) 

 𝑱𝒏−(𝒊−𝟏)
𝒅 = 𝑱𝒙

𝒇
  

𝐦(𝒏−(𝒊−𝟏))𝐦𝐤

𝐝 = 𝐦𝒙𝐦𝐤
𝐟    

such that 

𝒙 = 𝒉𝒊𝒈𝒉𝒆𝒔𝒕 𝒊𝒏𝒅𝒆𝒙|𝟏 ≤ 𝒙 ≤ 𝑱  𝒋𝒙
𝒇

∉ {𝒋𝟏
𝒅, , 𝒋𝒏

𝒅  } 

𝑱𝒋+𝟏
𝒅 = 𝒋𝒋+𝟏

𝒎   

𝒔𝒄𝒉𝒆𝒅𝒖𝒍𝒊𝒏𝒈 𝒎𝒐𝒅𝒆 𝒐𝒇 𝒕𝒉𝒆 𝒅𝒂𝒖𝒈𝒉𝒕𝒆𝒓 𝒊𝒔 𝒄𝒐𝒑𝒊𝒆𝒅 𝒇𝒓𝒐𝒎  
𝒎𝒐𝒕𝒉𝒆𝒓   

Figure Error! No text of specified style in document.Pseudo code for Multi point forward backward crossover 

For the RCPSP the cross over probability is in the range 0.7 to 0.9 depending on other genetic 

operators. Present study considered the fixed crossover probability as 0.9. 

Mutation  

We introduced entirely new genetic material in the population by generating new solutions, 

called mutant, using convex combinations of priority rules viz minimum latest finish time (LFT) 

and minimum slack (SLK). The scheduling mode gene is randomly assigned to mutant solutions. 

The number of mutant solutions is kept about three to five percent of population. These mutant 

solutions will replace the weakest solutions in the population. 

Termination criteria 

The benchmark for the problems on cost minimization is not available in the literature and they 

are tested on different benchmark datasets using different stop criteria, a fair comparison 

between each of these procedures is difficult (Van Peteghem and Vanhoucke (2013)). Therefore, 

we used termination criteria as 50,000 schedules for each problem. We calculate the cost 

associated with a schedule based on a critical path method (CPM) calculation with non-critical 

path activities, scheduled as late as possible. The performance evaluation criterion compares the 

percentage deviation in cost of a solution from the cost of CPM path based solution of the 

problem.  
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% Average deviation in cost =  
(𝑐𝑜𝑠𝑡  𝑜𝑓 𝑡ℎ𝑒 𝐶𝑃𝑀 𝑝𝑎𝑡ℎ 𝑏𝑎𝑠𝑒𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛−𝑐𝑜𝑠𝑡 𝑜𝑓 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 )

(𝑐𝑜𝑠𝑡 𝑜𝑓 𝑡ℎ𝑒 𝐶𝑃𝑀 𝑝𝑎𝑡ℎ 𝑏𝑎𝑠𝑒𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)
∗ 100 

 

 

Computational experiments 

The experiments detailed herein were performed on Intel Pentium desktop machine with 

frequency of 2.60 GHz and 512 MB RAM. The GA was coded in C++, compiled with Microsoft 

Visual C++ v.6.0 compiler and tested in Linux. We used a set of standard test problems available 

at www.psplib.com. We have two renewable and two non-renewable resources. 

For each instance from the PSPLIB library, we generated cost figures for the renewable and non-

renewable resources from the interval (0; 1000] with uniform distribution. For renewable 

resources, we calculated per-period cost, and for non-renewable resources, we calculated per-unit 

cost such that 𝐶𝑟1
< 𝐶𝑟2

< 𝐶𝑛𝑟1
< 𝐶𝑛𝑟2

. The cost of the capital employed ‘γ’ is taken as 0.05 % 

per period. Through exhaustive simulation on J10 dataset, optimum GA configuration was 

determined for numerical investigation. The computational investigation revealed that the 

algorithm performance was superior with α value as 0.75, initial population size as 200.  All 

other the parameters being held constant, the performance of the algorithm was superior at 

crossover and mutation probabilities as 0.7 and 0.03 respectively.  

Results and discussion 

We tested the performance of the algorithm for standard datasets available at http://www.om-

db.wi.tum.de/psplib/main.html  (i.e., j10, j12, j14, j16, j18, j20, j30).  

Table 1 lists the number of instances in a dataset for which feasible solutions could be found 

using the algorithm, with cost minimization as the objective. The results show that the algorithm 

provided feasible solutions for almost all the problem instances across datasets. 

Table 1. Number of feasible solutions found by the algorithm 

Data Set 
Number of 

Instances 
Number of instances with  

feasible solutions found 
J10 536 536 
J12 547 545 
J14 551 545 
J16 550 541 
J18 552 544 
J20 554 542 
J30 552 524 

 

The algorithm failed to find feasible solutions in some instances, especially for projects with a 

high number of activities. This suggests that adaptation of the algorithm helped in directing the 

search trajectory toward the feasible regions of the multi-modal solution space of MRCPSP. 

The experiments were carried out to study the performance of the algorithm. The performance is 

evaluated by comparing deviations between the cost objective function of the schedule and the 

CPM based schedule cost objective function. Higher deviations indicate that lower cost is 

http://www.psplib.com/
http://www.om-db.wi.tum.de/psplib/main.html
http://www.om-db.wi.tum.de/psplib/main.html
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achieved. The average and standard deviations in cost based on the proposed method for all the 

datasets are given in Table 2.  

Results of experimentation, as given in Table 2, show that the algorithm yielded better solutions 

(lower cost) than the CPM-based schedule. Similarly the standard deviations are very low for the 

algorithm. This indicates that the algorithm was able to come out of the local optima and reached 

closer to the optimal solutions.  Results show that the average deviations are higher and become 

significantly higher as the project size grows. Similarly standard deviations are lower as project 

size grows. An increase in project size also increases the complexity of the problem. Therefore, 

the proposed algorithm can help in solving scheduling programs for bigger projects, which have 

more complexity 

Table.2 The deviations of COST values 

Data Set Average deviation Standard deviation 
J10 7.072 13.00 
J12 7.435 9.49 
J14 6.623 10.47 
J16 6.720 10.88 
J18 5.856 10.76 
J20 5.521 10.12 
J30 3.615 8.87 

 

. 

Conclusion and future research direction 

In this paper, we discussed the MRCPSP with discounted cash flows. Our goal was to minimize 

the cost of the project. We presented an integer 0-1 programming formulation for the problem 

and considered only negative cash flows. The performance of the algorithm was compared with 

CPM path-based solutions. The costs associated with the resources were generated randomly 

with uniform distribution. The results of the computational experiment confirm that the 

algorithm performed well. In the future, we plan to explore different payment models and 

develop a branch-and-bound procedure for the accurate evaluation of the proposed algorithm. 
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