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Abstract

This paper presents an adaptive genetic algorithm for solving a multimode resource-constrained
project scheduling problem with discounted cash flows for minimizing costs. The genetic
algorithm operates on two crossovers adaptively. A mathematical model is developed and
detailed computational experiments are performed on a standard problem set to evaluate the
performance.
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Introduction

Resource constrained project scheduling (RCPSP) is concerned with scheduling of activities in a
project under resource and precedence constraints. RCPSP is traditionally considered an NP hard
optimization problem (Blazewicz et al., 1983). In this paper, an adaptive genetic algorithm
(AGA) is used to address MRCPSP with discounted cash flows (MRCPSPDCF) with cost
minimization as objective. The solution procedure assigns mode and start time to all activities in
a project such that the project cost is minimized. The 0-1 integer programming mathematical
formulation based on Talbot (1982) is presented for the problem.

Literature review

This problem was introduced by (Mohring 1984) as the resource investment problem and an
exact procedure based on graph algorithms is presented. Other exact procedures are proposed by
(Demeulemeester 1995) and (Rodrigues and Yamashita 2010). (Demeulemeester 1995)
developed an exact algorithm for the RACP. It is based on iterative solutions for the RCPSP
which is based on the branch-and-bound algorithm of (Demeulemeester and Herroelen 1992).
The algorithm tries to schedule based on the cheapest efficient point by iteratively altering the
resources corresponding to deadline. (Rodrigues and Yamashita 2010) modified the algorithm
developed by Demeulemeester (1995), by combining heuristic rules for initial solution, so that
solution space is reduced. He presented new bounds for the branching scheme that reduced the
number of sub problem. Langrangean relaxation and column generation technique for this
problem and developed two lower bounds for the resource availability cost problem (RACP)
(Drexl and Kimms 2001). RIP with MRCPSP is solved using due date constraints (activity slack)
and resource usage (resource investment) and are used to select and schedule tasks (Hsu and Kim
2005). A multi-start heuristic based on the scatter search methodology which searches the
solution space using solutions generated by different heuristics is proposed by (Yamashita et al.
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2006). A genetic algorithm for solving the resource investment problem with tardiness as penalty
is studied by (Shahdrok and Kianfer 2007)

(Ranjbar et al. 2008) introduced the resource trade-off problem with multiple resources. The
authors present a new hybrid meta heuristic algorithm based on scatter search and path re-linking
methods. In the SS algorithm, they use path re-linking concepts to generate children from parent
solutions, in the form of a new combination method. They also incorporate new strategies for
diversification and intensification to enhance the search, in the form of local search and forward—
backward scheduling, based on so-called reverse schedules, with the activity dependencies
reversed. (Peng and Wang 2009) solved multi-mode resource-constrained DTCTP model (MRC-
DTCTP) using GA in which activity crashing is used to reduce the cost. The bounds for the
activity cost considered. (Van Peteghem and Vanhoucke 2011) presented an invasive weed
optimization algorithm.

Model development

The MRCPSPDCF can be formulated as follows. We consider a project consisting of
precedence-related set A = {1, 2, j....J} of J activities. We consider additional activities j = 0
representing the only source and j = J + 1 representing unique sink activity of the network;
activities are topologically labelled such that the predecessors of the activity j will always be
numbered less than the activity number j. We define the set of immediate predecessor and
successor activities for an activity j as P; and Sj respectively. Precedence relations among
activities require that activity j cannot be started unless activity i € Pj is not over. All activities
except source and sink activity need resources for processing. Activities may use renewable and
or non-renewable resources. The horizon of the project is sum of durations of all the activities,
with longest mode, in the project.

The set of renewable resources is given by R; where k = {1,2,....K } and the set of non-
renewable resources is given by R;* where | = {1,2,3...L }. Per-period availability of renewable
resource, of type k, is given byR#". The total availability of non-renewable resource of type | for
the entire project duration is given byR{".

Depending on the amount of resources consumed, an activity j may be processed in more than
one way (each way referred to as a mode) and a set of all such modes of execution for an activity
j is denoted by Mj={1,2,...m;,...M; }. Activity j, performed in mode m € M;, has duration djm.
Activity performed in mode m requires Rj,,, units of k-type renewable resources per unit time

and R;y,,; units of I-type non-renewable resources.

Notations

Per period cost of using one unit of renewable resource Ry of type k.
Chr, Per unit cost of non-renewable resource Rj*of type I.

D The dead line of the project and is taken as two third of the horizon of the project.
X Overhead cost per day.

y The cost of the capital.

Y Bonus rate per day.

4 Penalty cost per day.

The earliest start time of the activity j

The latest start time of the activity j

The start time of the activity j



f The finish time of the activity j

ij Fixed cost associated with activity j

¢’ Variable cost associated with activity |

Considering the time value of money, the present value of future cost of activity execution can
be calculated by multiplying it with the discounting factor given by:

Discounting factor = ) where s; is the start time of the activity j.

The cost associated with an activity j can be stated as:

f _
¢ = X * djmy

ij = (Z 1( mk)( m)(Crk) + Z%:l(R?ml * Cnrl))
The discounted value of total cost of execution of activity j is given by

f v
T _ Cj +CJ

7Tty
The penalty and bonus arises, depending on the deadline overrun of the project. If f; is the finish
time of the terminal activity of the project, the bonus and penalty is estimated as
e The bonus amount B is given by

(D f/) y
D
=amyn TP
e The penalty amount is given by
_ (fy=p)+z
a+p Y 1 >b
Mathematically, this model can be formulated by defining 0-1 variablesx;,,,.
ls;
minimize Z Z c Xjme + B(P) (D)
j=1t=es;j
Subject to:
M] lS]'
Z Zx]-mt=1 =12 m) )
m= It es]
lsj ls;
Z Zt esj (t * d]m)x]mt Z Zt esitx”nt ] € P (3)
min t 1l51} ar
Z Z Z Xime < Ry k=12,..,K;t=12,...,D. (4)
| s=max{t—djm es;}
] M s
ZZ Z ! e < R} 1=12..,L (5)
] 1m= 1
(6)
x]mt {0 1} j=12,.....m=12,.. Mt = es,..,ls. (7)

We need to determine the execution mode and its starting time. The decision variable of the
problem is as follows:

{1, if activity j is executed in mode m and started at time t
Xjmt = ;
0, otherwise
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The objective function (1) is to minimize the cost of the project. It is assumed that the dummy
start node and dummy end node can only be processed in a single mode with duration equal to
zero. Equations (2) to (5) represent the constraints of the problem. Equation (2) assures that each
activity is assigned exactly one mode and exactly one start time. Equation (3) represents the
precedence constraints, i.e., the start time of the j is always greater than or equal to the finish
time of its predecessor activity i, which belongs to predecessor set P;j of j. Equation (4) checks
the per-period renewable resource violation by the activity that is in progress at time t. Equation
(5) represents the constraints on the non-renewable resources. It ensures that total requirement of
non-renewable resources by all the activities is less than or equal to the available resources.
Equation (6) sets the deadline of the completion of the project. Finally, Equation (7) imposes
binary values on the decision variables.

Genetic algorithm

The problem data is pre-processed using data pre-processing procedure suggested by Sprecher et
al (1997). The pre-processing procedure removes inefficient, non-executable modes of activities
and redundant non-renewable resources from the problem input data. GA works on this
processed data. The project information is presented in the form of solution representation and
genetic operators work on these representations. These representations are decoded back using
decoding procedure i.e. schedule generation schemes (SGS). We used solution representation as
shown in the figure 3.

ACTIVITY LIST | Jql Js | Jg .. | J |F/B ¢==Scheduling
MODE LIST |my | ma|ms m, Mode

Figure 3 Solution representation
Initial population

The initial population is generated using two heuristic rules viz. latest finish time (LFT) and
shortest processing time (SPT).The solutions in the population are decoded to schedules using
serial schedule generation scheme (SSGS). We used the rank selection strategy for selecting
individuals for the crossover operation. In rank selection methods, the individual solutions
receive their rank from the fitness values.

Fitness computation

Since the objective is cost minimization, the algorithm is driven by the cost of the schedule.
Therefore, the schedule cost is used as a fitness score of every chromosome in the population. By
relaxing non-renewable resource constraints, solutions with infeasibility with respect to non-
renewable resources are allowed to exist in the population so that high-quality genes from such
schedules are captured during the crossover and mutation process. Such infeasible individuals
are penalized in fitness function. The penalty is in terms of the cost associated with violation of
non-renewable resource. The fitness function for evaluation of fitness score with penalty is given
by equation (8). Fitness is computed for each individual depending on whether an individual
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solution is feasible or infeasible. The penalty cost is not discounted. Thus, the fitness value of a
feasible individual is always less than that of infeasible individuals.

D UNY if feasible
fGx) = {

(S (TC) } + Shenpmax {0, (S, 17 — ANR ) cr | OLHETWISE (8)

Cross over

Crossover is reproduction process in which two chromosomes combine together to produce two
offspring and transmit the genetic characteristics. The crossover design should achieve balance
of high mean fitness and diversity of population, which is often difficult with a single crossover
operator. Therefore we used two crossover operators viz three point and multi point forward
backward crossover operator. These operators operate adaptively on same population. Three
point crossover operator introduces diversity while multi point forward backward operator raises
average fitness of the population.

Three point crossover:

In three point crossover method, we generate three integer random numbers, say p, g and r, from
[1, J] such that 1< p <J/3, J/3< q < 2J/3 and 2J/3<r <J. where J is equal to number of activities
in project. They are used as crossover points for three point crossover method. The fractional
values are rounded to next higher integer values. The generation of son and daughter is explained

in the pseudo algorithm shown in fig 2. Let J, &, ],’: ,Jy represent the activity from the son,

daughter, father and mother schedule respectively. mismk, m?mk, m,f(mk, myr,  represent the

modes of the activity belonging to son, daughter, father and mother schedule respectively. The
generation of son and daughter is explained in the pseudo-algorithm shown in Fig 2.

Generation of son Generation of Daughter
fori=1topdo _fori=1 topdo
Ji =1 =1y
mismk = m;mk m;imk = m;’nmk
fori=p+1toqdo fori=p+1toqdo
y =lowestindex|1 <y <Jj}' ¢ {ji,....J5 } | x = lowestindex|1 <x <Jjl ¢ {j, L
=1y 2=y
. mismk = m;’nmk m;imk = mg(mk
fori=q+1tordo ; fori=q+1 tordo
x =lowestindex|1 < x <] j, & {ji,....j5 } | y = lowestindex|1 < y <Jjre (it .....jd }
s _f d _ m
]1 ]x ]i _]y
mismk = m§““k mismk = m;’nmk
fori=r+1tojdo fori=r+1tojdo
y =lowestindex|1 <y <Jj3'& {ji,--..J7 } | x = lowestindex|1 < x <Jjl ¢ {j% .....j¢ }
S — m L x
f mimk B mymk midmk = mf(mk
S — 7 .
Jin _]{'+1 ) Jfa = Jfa
sche.adulmg mode of the son is scheduling mode of the daughter is
copied from father copied from mother
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Figure 1Pseudo code for Three point crossover

Multi point forward-backward crossover

The generation of son and daughter is explained in the pseudo-algorithm shown in Fig 4. The
procedure ensures precedence relationship among the activities. Fig 5 describes the procedure for
generation of son and daughter for the example network shown in Fig 1.

Generation of son Generation of daughter
fori=1tondo fori=1tondo
;=T J=7y
lnismk = mg{mk m?mk = m?mk
such that such that
x = lowest index |1 < x <Jj. ¢ {j3,...js } |y =lowestindex|1<y<]jy & {j{..ji}
y=m-(@{-1)) x=Mm-(-1))
]fls—(i-l) =Jy ]ﬁ-(i—n = .’ch
M, 1))my = Mym, m‘(in_(i_l))mk =mb,,
such that such that
y = highestindex |1 <y <] j3' & {ji..ja } x = highestindex|1 <x <] ]',f( ¢ {j.jd }
Jjs1 = j1f+1 Jia =
scheduling mode of the son is copied from | scheduling mode of the daughter is copied from
father mother

Figure Error! No text of specified style in document.Pseudo code for Multi point forward backward crossover

For the RCPSP the cross over probability is in the range 0.7 to 0.9 depending on other genetic
operators. Present study considered the fixed crossover probability as 0.9.

Mutation

We introduced entirely new genetic material in the population by generating new solutions,
called mutant, using convex combinations of priority rules viz minimum latest finish time (LFT)
and minimum slack (SLK). The scheduling mode gene is randomly assigned to mutant solutions.
The number of mutant solutions is kept about three to five percent of population. These mutant
solutions will replace the weakest solutions in the population.

Termination criteria

The benchmark for the problems on cost minimization is not available in the literature and they
are tested on different benchmark datasets using different stop criteria, a fair comparison
between each of these procedures is difficult (Van Peteghem and Vanhoucke (2013)). Therefore,
we used termination criteria as 50,000 schedules for each problem. We calculate the cost
associated with a schedule based on a critical path method (CPM) calculation with non-critical
path activities, scheduled as late as possible. The performance evaluation criterion compares the
percentage deviation in cost of a solution from the cost of CPM path based solution of the
problem.




(cost of the CPM path based solution—cost of solution)
(cost of the CPM path based solution)

% Average deviation in cost = * 100

Computational experiments

The experiments detailed herein were performed on Intel Pentium desktop machine with
frequency of 2.60 GHz and 512 MB RAM. The GA was coded in C++, compiled with Microsoft
Visual C++ v.6.0 compiler and tested in Linux. We used a set of standard test problems available
at www.psplib.com. We have two renewable and two non-renewable resources.

For each instance from the PSPLIB library, we generated cost figures for the renewable and non-
renewable resources from the interval (0; 1000] with uniform distribution. For renewable
resources, we calculated per-period cost, and for non-renewable resources, we calculated per-unit
cost such that €, < C,, < Cyy, < Cpyr,. The cost of the capital employed “y’ is taken as 0.05 %
per period. Through exhaustive simulation on J10 dataset, optimum GA configuration was
determined for numerical investigation. The computational investigation revealed that the
algorithm performance was superior with a value as 0.75, initial population size as 200. All
other the parameters being held constant, the performance of the algorithm was superior at
crossover and mutation probabilities as 0.7 and 0.03 respectively.

Results and discussion

We tested the performance of the algorithm for standard datasets available at http://www.om-
db.wi.tum.de/psplib/main.html (i.e., j10, j12, j14, j16, j18, j20, j30).

Table 1 lists the number of instances in a dataset for which feasible solutions could be found
using the algorithm, with cost minimization as the objective. The results show that the algorithm
provided feasible solutions for almost all the problem instances across datasets.

Table 1. Number of feasible solutions found by the algorithm

Data Set Number of Numper of ins_tances with
Instances feasible solutions found
J10 536 536
J12 547 545
J14 551 545
J16 550 541
J18 552 544
J20 554 542
J30 552 524

The algorithm failed to find feasible solutions in some instances, especially for projects with a
high number of activities. This suggests that adaptation of the algorithm helped in directing the
search trajectory toward the feasible regions of the multi-modal solution space of MRCPSP.

The experiments were carried out to study the performance of the algorithm. The performance is
evaluated by comparing deviations between the cost objective function of the schedule and the
CPM based schedule cost objective function. Higher deviations indicate that lower cost is
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achieved. The average and standard deviations in cost based on the proposed method for all the
datasets are given in Table 2.

Results of experimentation, as given in Table 2, show that the algorithm yielded better solutions
(lower cost) than the CPM-based schedule. Similarly the standard deviations are very low for the
algorithm. This indicates that the algorithm was able to come out of the local optima and reached
closer to the optimal solutions. Results show that the average deviations are higher and become
significantly higher as the project size grows. Similarly standard deviations are lower as project
size grows. An increase in project size also increases the complexity of the problem. Therefore,
the proposed algorithm can help in solving scheduling programs for bigger projects, which have
more complexity

Table.2 The deviations of COST values

Data Set Average deviation Standard deviation
J10 7.072 13.00
J12 7.435 9.49
J14 6.623 10.47
J16 6.720 10.88
J18 5.856 10.76
J20 5.521 10.12
J30 3.615 8.87

Conclusion and future research direction

In this paper, we discussed the MRCPSP with discounted cash flows. Our goal was to minimize
the cost of the project. We presented an integer 0-1 programming formulation for the problem
and considered only negative cash flows. The performance of the algorithm was compared with
CPM path-based solutions. The costs associated with the resources were generated randomly
with uniform distribution. The results of the computational experiment confirm that the
algorithm performed well. In the future, we plan to explore different payment models and
develop a branch-and-bound procedure for the accurate evaluation of the proposed algorithm.
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