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Abstract

The volatile environment today's manufacturing companies are facing generates pressure on
decision-makers in production logistics. This is the reason why decision-making at the earliest
point in time gains significance. The approach presented in this paper reveals how simulation
tools can be used to bring forward the time of decision.
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Introduction

Dynamic and high-competitive global markets ensure technological progress, but lead to an
extremely unstable environment for production systems. Manufacturing companies in high-wage
countries are increasingly challenged by lower production costs in low-wage countries (Brecher
2012). Beside high quality products, other key factors like delivery reliability can help to stay
competitive. Therefore, high logistic performance on the basis of a well-planned and well-
controlled production has never been more relevant than today (Schuh et al. 2013). Logistic
performance as one strategic objective of a manufacturing company can be monitored on
different levels of a production system, whereas key criteria are lead time, through-put, work in
progress or capacity utilization (Gunasekaran et al. 2001).

The basis for adequate planning and control in production is information. Thus,
information systems like Enterprise Resource Planning (ERP), Advanced Planning and
Scheduling (APS) and Product Data Acquisition (PDA) have been established over the last
decades. They help to plan and schedule on a short-, middle- or long-term-basis. However, in
case of little changes or deviations during operation the existence of multiple systems often leads
to incorrect, ambiguous or inconsistent data between systems which results in time delays and
bad responsiveness within production control (Kwak and Kim 2012). Today, one consistent and
up-to-date information system in terms of one product lifecycle management system is
technologically realizable (S&aksvuori and Immonen 2008). It therefore needs to be established
if production time and cost pressure occurs. This paper assumes the successful implementation of
such an integrated information system which serves as basis for the virtual world.

The advantage of virtuality is its freedom from the constraints of time and place.
Processes can be operated with nearly any speed and components can be freely transferred from
one place to another. Virtual resources are unlimited and theoretically any number of experiments
can be conducted in the virtual world with hardly any additional expense. Moreover, as

1



simulations run in a fraction of a second, so-called virtual try-out can be realized in parallel and
to physical processes without direct intervention (Takahashi 2011) (Verein Deutscher Ingenieure
2010). These cost and time advantages imply that virtuality and simulations have opened up a
new world for production systems, whose potentials can be realized now, at times of high
computing power and storage capacity. However, simulations mean first of all higher costs, as
long as they do not result in a product or process improvement. Thus, we will analyze how
simulations can contribute to leverage knowledge and improve decisions, and therefore optimize
processes regarding production logistics. For this the decision-making process is considered and
compare it with the possibilities of simulation environments.

The remainder of the paper is structured as follows. First, an overview of the state of the
art concerning simulation procedures in production logistics on the one side and decision-making
processes on the other side is given. After that both procedures are compared in order to find
overlapping processes. The succeeding section presents a hypothesis regarding improvement of
performance by simulation studies. The paper concludes with an outlook on potential research
avenues.

State of the art

First applications of simulation technology in industrial plants began in the years of 1950
(Goldsman et al. 2010). Since then, manufacturing companies have benefited from the aid of
simulation technology on three different levels: systems, controlling and kinematics (Kuehn
2006). As the application of simulations in planning, implementation and operation of technical
systems increased, the Association of German Engineers (VDI) published the first draft of a
guideline “Simulation of systems in materials handling, logistics and production” in 1993 in
order to facilitate the entry of beginners into the application of simulations (Verein Deutscher
Ingenieure 2013). It includes definitions, principles and requirements for simulation studies.
Simulation development environments usually consist of the following components: simulation
kernel, data management, user interface, and interfaces to external programs (Verein Deutscher
Ingenieure 2010). The simulation kernel represents the model world including processing of
events and coordination of individual components and is hence responsible as central sequence
control system. The data management provides input, state and simulation results data in order to
enable operating within a dynamic model. The entering of data and representation of results is
realized by the user interface. The interfaces to external programs enable the integration of
existing data inventories and the data transfer to other systems.

Simulation studies require a sequence of relevant steps which can be divided into
preparation, implementation and evaluation (Verein Deutscher Ingenieure 2010). First, the
preparation phase includes the formulation of the overall target profit maximization. It can be
divided into eventually contradicting sub-targets, for instance delivery reliability, capacity
utilization, through-put or minimizing work in progress. Second, the definition of tasks and
modeling of interdependencies within the system are part of the preparation phase. After the
development of a formal model is completed, it can be implemented into the simulation
environment and experiments can be started. In the end the results of all conducted experiments
require careful analyzis, so that adequate measures can be deduced. The basis for those processes
is the gathering and preparation of raw data which can be conducted in parallel. Furthermore, the
verification and validation of all phases’ results in terms of target, tasks, models or simulation
results is essential in all phases of the simulation study. It serves to identify and eliminate errors
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as soon as they arise (Chung 2004). This involves careful documentation of each step and result
of every phase. The common procedure for simulation studies is depicted in Figure 1.
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Figure 1: Procedure model for a simulation study (adapted from: Rabe et al. 2008)

Planning, implementation and operation processes permanently require decision-making. Thus,
decision support systems (DSS) embedding simulations are increasingly deployed in such
processes (Heilala et al. 2010). Before evaluating the effectiveness of embedded simulation
technologies in DSS, it is necessary to understand the process of decision-making in planning.
Bendixen and Kemmler (1972) define the following planning phases: problem identification,
information analyzis, definition of interdependencies, identification of possible solutions,
detailing problem-solving-concept, decision-making and implementation. For a better overview
we cluster these phases into three main phases: preparation, decision-making and
implementation, as summarized in Table 1.

Table 1: Decision-making process

Phases Process steps
Preparation 1. Gather and filter information
2. Understand and define relationships
3. Identify and analyze alternatives
4. Evaluate alternatives by criteria
Decision-making 5. Choose alternative
Implementation 6. Implement the decision
7. Review the decision




Software-based DSS help to realize the tasks mentioned above, partly with or without the aid of
humans, depending on the degree of automation (Chan et al. 2000) (Blutner et al. 2009). For
decision-making itself, however, the human factor will remain essential, also in an Industrie 4.0-
environment, respectively in cyber physical production systems (Schuh et al. 2014). But also the
preparation of decision-making will always require the human factor, as will become clear in the
following.

By comparing the simulation processes of Figure 1 with the preparation processes of
Table 1 three main simulation study processes can be identified that are directly related to
decision preparation, as depicted in Table 2. The storage of all simulation models, runs and
results in the simulation database additionally serves as an efficient basis for decision-making.

Table 2: Decision preparation by simulation study and experience reservoir

Simulation study process Equivalent decision preparation Experience reservoir
1. Modeling Understand and define relationships
2. Experiments Analyze alternatives Database
3. Result analyzis Evaluate alternatives by criteria

First the modeling involves the definition and understanding of relationships within a
system and results in a simulation model. On this basis, experiments can be simulated which
serve to analyze alternatives. Consequently, the experiment results can be analyzed and
visualized via so-called meta-models. After having identified the relationship between simulation
study and decision-making the question arises to what extent the above described simulation
processes can improve decisions or bring forward the time of decision. Therefore, a hypothesis is
formulated in the following in order to reveal this effect.

Hypothesis

In times of increasing computing power it appears that focus is rather set on technical
possibilities than on the principal matter. In terms of simulations this would mean that the
preceding process, i.e. the modeling, and the succeeding process, i.e. the meta-modeling, are not
intended to be neglected. Within the Cluster of Excellence “Integrative Production Technology
for High-Wage Countries” of the RWTH Aachen University simulations are deployed both for
logistics as well as on process level (Brecher 2012). In interviews with several workgroups it was
stated that they primarily benefit from modeling. By investing considerable effort into modeling
they better understand correlations within the system. Thus, they achieve high learning effects
and consequently improve their planning or operating of physical processes.

This emphasizes that the benefit of simulation technology already begins with modeling
and even before the first simulation experiment is conducted. Of course, simulation experiments
also result in learning effects by revealing interactions between parameters and set targets as well
as among parameters. After completion of the experiments, simulation results need to be
interpreted and visualized via meta-modeling. Here the workgroups underlined again that the
meta-modeling process involves learning effects by improving the understanding and
interpretation of the effects of simulated alternatives. The guideline 3633 of the VDI underlines
those statements: “Simulation thus supports the users in progressing from an understanding of the
problem to an understanding of the system. On this basis, they can then comprehensively observe
the system and finally find efficient measures to solve the problem.”
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Therefore, we hypothesize that virtual modeling, simulation and meta-modeling are key
enablers to faster improve the performance of physical processes via learning effects than with
trial and error.

In Figure 2 the performance due to the working methods mentioned above is qualitatively
drawn in form of learning curves to illustrate the hypothesis (Yelle 1979).
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Figure 2: Learning curves of different working methods

Whereas the learning rate of the trial and error method is the lowest, modeling, simulating
and meta-modeling lead to additional learning effects. The best learning effect is yielded, when
all mentioned methods are deployed (black graph). The graphs depicted in Figure 2 emphasize an
additive learning effect between the processes ‘modeling’, ‘simulating’ and ‘meta-modeling’.
This implies that the significance of a simulation study varies with the qualities of the underlying
models. A simulation experiment, for instance, is only as good as the underlying model. Also the
meta-model is only as good as the conducted simulation experiments. Finally, the decision-
making will only have a valid fundament, if the underlying meta-model enables the conclusion of
right coherences and visualizes usable information for the decision-maker. The corresponding
function of the depicted graphs in Figure 2 is the following:

P() =ax@®)" (1)
where P(x) =  Performance (Lead time, through-put, work in progress or capacity utilization)
a = Maximal performance
i = Initial performance due to prior experience
r = Rate parameter, theoretically related to working methods ‘trial and error’,
‘modeling’, ‘simulating’, ‘meta-modeling’
X = Number of trials

The higher the learning rate, the faster the performance can be improved. Every
performance improvement requires a decision of at least one parameter change. Thus, the
increase of learning rate implies decision-making at an earlier point and therefore a time
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advantage. There is another factor that can reduce time in decision-making. This is described in
equation 1 as initial performance due to prior experience and is related to the database of
simulation environments that permanently stores updated models, simulation runs and improved
meta-models. It keeps the knowledge level constant by ‘“saving experience”. By such an
experience reservoir within a simulating system the decision basis is strengthened from the outset
and performance can be directly improved. Those time reducing effects which lead to a quicker
performance improvement are portrayed in Figure 3.
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Figure 3: Accelerating performance improvement by working method and experience

Conclusion and future research

In this paper, the effects of simulation studies on decision-making in production logistics were
presented. On the basis of conducted interviews within the Cluster of Excellence “Integrative
Production Technology for High-Wage Countries”, a hypothesis how simulation studies can
contribute to improve performance in production logistics was formulated. Besides simulating, it
sets the focus on modeling and meta-modeling in order to leverage learning effects and improve
the decision basis. Future research needs to focus on the validation of the hypothesis. Also the
quantification of the depicted learning curves needs to be addressed. Additionally, the results
might be used to set criteria to evaluate existing simulation tools in production logistics.

Acknowledgements

This new approach of improving decision-making and logistic performance by simulation studies
is being investigated by the Laboratory of Machine Tools and Production Engineering (WZL)
within the publicly funded research and development project: Cluster of Excellence “Integrative
Production Technology for High-Wage Countries” (German Research Foundation, DFG).



References

Bendixen, P., Kemmler, H. W. 1972. Planung;: Organisation und Methodik innovativer Entscheidungsprozesse. De
Gruyter, Berlin, New York.

Blutner, D., Cramer, S., Krause, S., Monks, T., Nagel, L. 2009. Assistenzsysteme fir die
Entscheidungsunterstitzung. P. Buchholz, U. Clausen, eds. Grosse Netze der Logistik: Die Ergebnisse des
Sonderforschungsbereichs 559. Springer, Berlin, 241-270.

Brecher, C. 2012. Integrative production technology for high-wage countries. Springer, Berlin, New York.

Chan, F. T., Jiang, B., Tang, N. K. 2000. The development of intelligent decision support tools to aid the design of
flexible manufacturing systems. International Journal of Production Economics 65(1): 73-84.

Chung, C. A. 2004. Simulation modeling handbook: A practical approach. CRC Press, Boca Raton.

Goldsman, D., Nance, R. E., Wilson, J. R. 2010. A brief history of simulation revisited. Proceedings of the 2010
Winter Simulation Conference: 567-574.

Gunasekaran, A., Patel, C., Tirtiroglu, E. 2001. Performance measures and metrics in a supply chain environment.
International Journal of Operations & Production Management) 21(1/2): 71-87.

Heilala, J., Montonen, J., Jarvinen, P., Kivikunnas, S. 2010. Decision Support Using Simulation for Customer-
Driven Manufacturing System Design and Operations Planning. R. Tavakkoli-Moghaddam, G. Zhang, S.
Hassanzadeh Amin, eds. A Proposed Decision Support System for Location Selection Using Fuzzy Quality
Function Deployment. INTECH Open Access Publisher, 235-260.

Kuehn, W. 2006. Digital Factory: Integration of simulation enhancing the product and production process towards
operative control and optimisation. Proceedings of the 38th conference on Winter simulation 1899-1906.

Kwak, D.-S., Kim, K.-J. 2012. A data mining approach considering missing values or the optimization of
semiconductor-manufacturing processes. Expert Systems with Applications 39(3): 2590-2596.

Rabe, M., Spieckermann, S., Wenzel, S. 2008. Verifikation und Validierung fur die Simulation in Produktion und
Logistik: Vorgehensmodelle und Techniken. Springer, Berlin, Heidelberg.

Saédksvuori, A., Immonen, A. 2008. Product lifecycle management, 3rd ed. Springer, Berlin, London.

Schuh, G., Potente, T., Thomas, C., Hausberg, C. 2013. Restructuring of Production vs. Continuous Improvement
Processes-How to Increase Production Performance. POMS 2013 Proceedings, 24th Annual Conference
Production and Operations Management Society, Denver, USA: 3-6.

Schuh, G., Potente, T., Varandani, R., Hausberg, C., Franken, B. 2014. Collaboration Moves Productivity To The
Next Level. Procedia CIRP 17: 3-8.

Takahashi, S. 2011. Virtual Tryout Technologies for Preparing Automotive Manufacturing. Transactions of JWRI
2012, Special Issue on WSE2011: 61-66.

Verein Deutscher Ingenieure. 2010. VDI-Richtlinie 3633 Blatt 1 ,,Simulation von Logistik-, Materialfluss und
Produktionssystemen®. Entwurf, Berlin.

Verein Deutscher Ingenieure. 2013. VDI-Richtlinie 3633 ,,Begriffsdefinitionen". Entwurf, Berlin.

Yelle, L. E. 1979. The learning curve: Historical review and comprehensive survey. Decision Sciences 10(2): 302-
328.



