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Abstract  

Investigating the antecedents of cycle time reduction is a continuing concern within new 

product development (NPD) research (Chen et al., 2010; Cankurtaran et al., 2013). A number 

of researchers have reported the effects of team learning on NPD speed (Dayan and Di 

Benedetto, 2008; Cankurtaran et al., 2013), while others relate learning to overall team 

performance (Magni et al., 2013). However, few studies have systematically researched the 

effects of improvisation and trial-and-error learning on NPD cycle time. The aim of this study 

is to shine new light on NPD learning and cycle time reduction through an examination of the 

effects of improvisation and trial-and-error. To that end, this study conceptualizes and tests 

the settings wherein improvisation and trial-and-error might contribute or hinder NPD cycle 

time reduction.  

The authors develop hypothesis to investigate the effects of improvisation - and trial-

and-error learning on NPD cycle time. Based on a review of the literature and in-depth 

interviews measures are defined to approximate improvisation and trial-and-error using 

secondary data from over 200 projects with absolute objective measures of cycle time. In 

addition, 1000s archival records of debugging incidents and engineering changes are used to 

approximate the impact of improvisation and trial-and-error. To estimate their impact on 

cycle time a learning curve model is developed (Argote, 2012) which offers an effective way 

of identifying the conditions that drive cycle time learning and performance (Wiersma, 2007). 

Based on this model the hypotheses are tested.  

The findings suggest that improvisation and trial-and-error contribute to cycle time 

learning in the prototyping and pilot phases only, and that they hinder learning during later 

stages in the NPD process. These findings contribute to the extant literature by providing an 

important new organizational learning perspective on NPD speed. The study contributes to 

practice by relating firms’ improvisation and trial-and-error practices to learning and speed 

performance.  
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Introduction  
To date there are only a few studies that have investigated the NPD conditions across stages 

and the longitudinal consequences of initial project activity and performances on subsequent 

projects (Eling et al. 2013). The effect of conditions that change across stages is highlighted 

in several studies. Langerak and Hultink (2006) underline the impact of product 

innovativeness on NPD cycle time consequences. Eisenhardt and Tabrizi (1995) highlight the 

difference between a compression and experience based cycle time reduction strategy for 

different types of projects. Dröge et al. (2000) illustrate differences of cycle time driver 

effects in different phases of the NPD process. To contribute to the extant literature on NPD 

cycle time this research was set up with two primary aims: (1) to postulate a learning curve 
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model to investigate longitudinal effects of NPD cycle time management; and (2) to 

determine the impact of learning on the cycle time effects of design process characteristics. 

This study builds the argument that a substantial part of NPD cycle time driver 

ambiguity can be explained by the differences in learning by NPD teams. The fundamental 

premise of this study is that more experience leads to an increased understanding of the 

technology, user and field experience about the base line product design, and increased 

capability to cope with contingency changes. By investigating the impact of experience the 

objective is to scrutinize the ambiguity of the effects of learning on NPD cycle time 

reduction. One area that especially deserves attention is the management of the product 

design across the NPD stages as the literature does not show salient effects of design iteration 

on NPD cycle time (Cankurtaran, Langerak, and Griffin, 2013). For design debugging (i.e., 

testing) literature is quite consistent on the positive effects of cycle time reduction. However, 

the effects are not investigated by considering subsequent projects in a product line or the 

different stages of the NPD process.  

The learning curve, defined as the function that describes the performance 

improvement when output or time is doubled (Argote, 2012), provides a rigorous conceptual 

lens that enables investigating longitudinal patterns in NPD cycle time management. 

Especially activities related to improvisational and trial-and-error based learning are 

postulated to contribute to performance (Miner at al., 2001). Improvisation in particular is a 

critical, yet neglected area of organizational learning (Crossan et al., 2005). Various scholars 

call for more systematic empirical research into both improvisation and learning (e.g., Baker 

et al., 2003; Crossan et al., 2005;  Vendelø, 2009; Leybourne et al., 2014). This learning leads 

to improvements in the ability of teams to improvise, increases knowledge about previous 

trials, and thus enhances design iteration and design debugging skills. Accordingly, the more 

NPD design experience, the better the improvisational and trial-and-error activities, the better 

cycle time performance is ought to be. Anecdotal evidence suggests that being too late with 

design iteration and design debugging might negatively correlate with performance 

(Terwiesch and Xu, 2004; Terwiesch and Loch, 1999). In other words, the effects of design 

iteration and design debugging on NPD cycle time is expected to depend on the opportunity 

to learn within the NPD process.  

Following this line of reasoning this study postulates to include the effect of 

experience in NPD cycle time research as a way to explain phasic differences of NPD 

projects. Specifically, the learning curve perspective allows us to test the influences of 

improvisational and trial-and-error based learning by specifying learning curves based on 

accumulated experience, design iteration, design debugging and NPD cycle time. These 

learning effects are further conceptualized by using the extant literature on trial-and-error and 

improvisational learning. By taking a learning curve perspective this is one of the few studies 

to undertake a longitudinal analysis of NPD cycle time reduction. This provides an angle for 

further research on NPD performance in general, and NPD cycle time in particular. Thus, the 

main contribution of this study is not only providing knowledge about the effects of design 

iteration and design debugging on NPD cycle time, but it also provides knowledge and 

methodology for longitudinal cycle time research. 

 

Framework and Hypotheses 
This research is anchored on the idea that cycle time reduction can be regarded as a two-sided 

coin. In some contexts cycle time reduction has advantages and while in other situations it 

better to spend more time (i.e., increase cycle time) to enhance learning. A learning curve 

model is developed to investigate the longitudinal effects of learning on NPD cycle time. 

Figure 1 provides the conceptual framework tested in this study. The remainder of this 

section is organized as follows. First, a conceptualization of the types of learning investigated 
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in this study is provided. Then, an explanation of autonomous learning effects on cycle time 

is provided (H1). Subsequently, the arguments for the mediating effects of improvisational 

and trial-and-error based learning on autonomous learning are explained (H2-H3). Specifically 

the  learning curve model based on the effects of cumulative experience (CVOL) on NPD 

cycle time (CT), with mediated learning effects through design iteration (DI), and design 

debugging (DEB) is discussed. Finally, the hypotheses related to the effect of design iteration 

on design debugging is discussed (H4).  

 
Figure 1 - Conceptual model (*refers to both the direct and mediated effect) 

  

Three categories of learning: Autonomous, trial-and-error and improvisational 

Organizational learning curve research is premised on the idea that accumulated experience 

creates knowledge that improves performance. Learning is generally measured using 

cumulative output volume or calendar time (Argote, 2012). In this study three types of 

learning are investigated: (1) autonomous learning; (2) trial-and-error learning; and (3) 

improvisational learning. 

The first type of learning has been labeled "autonomous learning" (Dutton and 

Thomas, 1984), first-order learning (Adler and Clark, 1991) and learning-by-doing (Zoilo and 

Winter, 2002) in prior research. Autonomous learning emerges from the repetition of tasks 

that leads to experience in the execution of activities (Adler and Clark, 1991). Limited studies 

have related learning to cycle time while their obviously seems a connection. On the one 

hand, the opportunity to learn is hindered or supported by appropriate timing and sufficient 

duration (Berends and Antonacopoulou, 2014). Shorter time windows evoke improvisation 

(Vendelø, 2009) which in turn exasperates automatic learning (Miner at al., 2001). On the 

other hand, faster NPD allows for more development iterations and trial-and-errors, which 

also can stimulate learning (Eisenhardt and Tabrizi, 1995; Loch et al., 2006). This study 

relates autonomous learning to two types of learning that are expected to affect accelerated 

NPD: trial-and-error and improvisational learning. 

The second type of learning investigated is “trial-and-error learning” (Miner at al., 

2001). With trial-and-error learning problems are observed before or during NPD activity, but 

solved “on-line” by development. Although generic systematic knowledge can be the result, 

but it is often still localized and based on local decisions. The production of generalizable 

knowledge can be derived from comparing before and after effects (Miner at al., 2001). As 

such, unexpected outcomes may be noticed, but there is limited chance to relate expected or 

similar effects to the past. Trial-and-error learning emerges from activities (in this study 

related to design) that emerge from explicit managerial or operative intervention (Adler and 

Clark, 1991). Trial-and-error learning thus can be regarded as a special kind of induced 
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learning (Dutton and Thomas 1984). In the literature this is also labelled as “deliberate 

learning” (Arthur and Huntly, 2005) and second order learning (Adler and Clark, 1991). 

The third type of learning is related to improvisation. Improvisation is defined by the 

time convergence of an emerged problem or opportunity, and the design or production of a 

solution (Miner at al., 2001). It relates to a type of problem solving that takes place in 

experiential settings wherein product development problems are rapidly solved by hands-on 

improvisation and fire-fighting (Repenning, 2001). For trial-and-error learning the 

appearance of a problem and the search for a solution can diverge more with respect to time 

when compared to improvisation. Due to time convergence organizational behaviors are 

likely to have local value and are often tailored to specific settings where the problem arises. 

Therefore the related knowledge regularly is idiosyncratic in time and place (Miner at al., 

2001). In the context of NPD this learning emerges from design debugs. Learning from 

design debugs is likely to take place in situations where output is limited (Terwiesch and 

Bohn, 2001) and where process improvements are postponed to volume production 

(Terwiesch and Xu, 2004).   

 

Autonomous learning effects 

Although many studies have been published on the antecedents of NPD speed, the literature 

shows ambiguity in the effects of some drivers (Cankurtaran, Langerak, and Griffin, 2013). 

Learning however is assumed to contribute to cycle time reduction albeit that prior research 

only investigated the effects at the individual project level through cross sectional research 

designs. If autonomous learning indeed explains a substantial part of variety in NPD cycle 

time this should also be captured using a learning curve approach. Although autonomous 

learning has been tested in the context of various types of induced learning (e.g., Adler and 

Clark, 1991), it has not been investigated in a cycle time setting. Therefore the hypothesis 

that will be tested in this study concerns the relationship between cumulative experience (i.e., 

autonomous learning) and NPD cycle time. Thus:      
 

H1:  Experience leads to significantly lower NPD cycle time (i.e. autonomous learning 

described in the form described by the learning curve formula). 
 

Our conceptualization in Figure 1 also allows comparing the effects of autonomous learning 

to other forms of learning by investigating the mediation paths. This is explained in the 

subsequent sections. 

 

The mediating effect of trial-and-error and improvisational learning 

Over two decades ago researchers already contemplated about the effects of the amount of 

design change (compared to previous generation) as a variable to explain variance in cycle 

time (Griffin, 1993). Other authors use other terms to refer to this phenomenon. Some authors 

talk about the frequency of prototyping and testing (Callahan and Moretton, 2001), while 

others refer to the number of redesign iterations before stabilization (Eisenhardt and Tabrizi, 

1995). Some authors relate the process of building and testing a prototype in an NPD 

initiative with cycle time (Chen, 2010). In this study design iteration refers to the activities 

related to improving the product by changing the design. With design debugging this study 

refers to activities related to real-time solving of design related problems concerning 

qualification, testing, manufacturing, assembly, supply, and service.  

In view of the effects of design iteration and design debugging on NPD cycle time 

and the impact of cumulative experience on NPD cycle time, one might logically expect a 

mediating role of trial-and-error and improvisational learning. Design iterations can be 

regarded as a specific source of learning (Miner at al., 2001). In an experimental NPD setting 

trial-and-error learning is the result of problem analysis and solution finding by engineers 



5 

 

(Macher and Mowery, 2003). The knowledge that is mined from design iteration is 

considered as a good proxy of trail-and-error learning for two reasons. First, design iterations 

are in many firms a well-established way to manage and communicate the explicitly 

knowledge about alternations to product designs. These often result from unexpected 

problems and evolving insights and are often labelled as engineering changes and solved “on-

line” by specialized development teams (in line with Miner at al., 2001). Secondly, design 

iteration delivers possibilities for deliberate analysis of alternative problems and opportunities 

which can also lead to generic design knowledge (Miner at al., 2001). It is therefore 

postulated that design iteration follows an improvement pattern analogous to a learning 

curve. The more experience NPD teams have, the higher the quality of the products become, 

the less design iterations will happen. These arguments result in the following hypothesis 

related to experimental learning: 
 

H2a:  Experience leads to significantly lower number of design iterations (i.e. trial and 

error learning described in the form described by the learning curve formula). 
 

Although research has been reported about the impact of design iteration on NPD cycle time, 

it does not provide support for salient effects (Cankurtaran, Langerak, and Griffin, 2013). 

This research postulates that this ambiguous finding might relate to two alternative effects. 

On the one hand, the more design iteration activity, the more work, and thus the more cycle 

time required to finish the NPD project. On the other hand, more design iteration leads to a 

reduction of problems in the base-line design, less work in later design activity, and thus to a 

reduced NPD cycle time. In this study we postulate that along the entire NPD process the 

positive effects prevail. Therefore: 
 

H2b:  Design iteration (i.e. trial and error learning) is positively associated with NPD cycle 

 time 
 

Next to the proposition about the direct effect, the intention is to investigate whether or not 

the relation between autonomous learning and NPD cycle time can be explained by mediated 

effects of trial-and-error learning. This is achieved by an analysis of the indirect effects of 

autonomous learning on NPD cycle time. Trial-and-error learning, which is defined by the 

relationship between cumulative volume and design iteration, is thus expected to contribute 

to cycle time reduction: 
 

H2c:  Trial-and-error learning at least partially mediates the influence of autonomous 

learning on NPD cycle time  
 

The final hypotheses explain the effects of improvisational learning effects. Improvisation 

learning is real time, requires creativity, and is a spontaneous immediate action in solving a 

problem or finding an opportunity (Magni et al., 2013). External time pressure, coupled with 

a lack of relevant prior experience may well be a common trigger for improvisation (Miner et 

al., 2001; Crossan et al., 2005). A typical example of improvisation in the context of NPD is 

design debugging, which is the enhancement of testability of a design by a quick fix or 

solution containment. In this study improvisation is defined as the convergence between 

design and execution (Baker et al., 2003; Moorman and Miner, 1998; Miner et al., 2001). It is 

assumed that the experience, labelled as improvisational, that emerges from the cumulative 

number of projects reduces the required design debugging activity in the learning curve form. 

Thus, 
 

H3a:  Experience leads to significantly lower number of design debugs (i.e. improvisational 

learning described in the form described by the learning curve formula). 
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Yet, it is expected that this kind of learning is not a sinecure: when the design problem is 

solved the focus changes to continuation of the process which leads to limited automatic 

reflection. Terwiesch and Xu (2004) therefore suggest that unnecessary debugs must be 

postponed because they lead to unnecessary disruptions and have limited systematic learning. 

However, in the context of NPD the ability to rapidly react to unforeseen problems without 

delaying the project is especially important in highly innovative contexts. Moreover, it also 

can be a fruitful source for learning. Design debugging activity can be expressed as extra 

workload, while debugging might also have positive effects on cycle time performance in 

subsequent NPD activities.  
 

H3b:  Design debugging (i.e. improvisational learning) is positively associated with NPD 

 cycle time 
 

Based on the above arguments, it is postulated that improvisational learning contributes to 

cycle time performance: 
 

H3c:  Improvisational learning at least partially mediates the influence of autonomous 

learning on NPD cycle time  
 

It is also postulated that design iteration leads to design debugging. Design iterations or 

design changes have all kind of disturbing effects on downstream NPD activities such as 

changes in prototype tools and changes in production tools (Terwiesch and Loch, 1999). 

They also lead to disturbances in processes (Terwiesch and Xu, 2004). Yet, these effects are 

not yet systematically tested. Therefore it is hypothesized that:    
 

H4:  Design iteration is positively associated with design debugging. 
 

Methodology 
 

Empirical setting 

The objective of this study was to develop a learning curve model to investigate longitudinal 

effects of NPD cycle time management. One of the decisions in the research design was to 

use objective data. Objective data was chosen over subjective data, because a meta study on 

NPD cycle time has shown that it provides stronger test results (Cankurtaran et al., 2013). 

This decision resulted in two initial requirements for selecting an empirical setting. First of 

all, it required us to select a company that provides the opportunity to collect highly detailed 

data. Secondly, it required us to conduct in-depth interviews and document studies in order to 

operationalize the theoretical concepts into proxies. The empirical setting of the study is an 

high-tech industrial machinery manufacturer in the Netherlands. The firm delivers 

lithography systems for the semiconductor industry and is world market leader. The 

development and production of these systems is very knowledge intensive and requires lots 

of investments in technology and people. Currently the firm has over 10.000 employees in 

more than 70 locations in 16 countries. 

Next to these methodological arguments two theoretical selection criteria needed to be 

met. First of all, because the analysis aims to investigate learning effects of design activity in 

NPD context, it was important to select a setting that is characterized by technological 

turbulence and innovative firm climate (Swink, 2000; Langerak and Hultink, 2006). 

Secondly, our primary aim is testing the learning curve model in an empirical setting which 

required diverse cases. For the purpose of data analysis sufficient commonality is required for 

replication logic, but also sufficient diversity enables to search for diverse patterns 

(Eisenhardt, 1989). Case diversity allows finding conditions that shape learning (Wiersma, 

2007). Although the study is limited to a single company, the research team was able to select 
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embedded cases that show diversity technological turbulence and innovative climate. Based 

on this, two business lines were selected for in-depth analysis. These business lines are 

homogenous in terms of the organization of their main NPD process (e.g., the State Gate 

process). This allowed to build replication logic.   

 

Variable measurement  

The variables related to improvisation and trial-and-error were operationalized in three steps. 

First, interviews were held with several key informants that are involved in the research 

project. In these semi-structured meetings, the theoretical concepts related to learning curve 

were discussed, followed by questions and a discussion about key processes related to 

learning and cycle time improvements. The themes that emerged had a strong corroboration 

with the improvisation and trial-and-error concepts reported by Miner at al. (2001) and the 

design iteration and design debugging constructs. Next to these concepts measurement of 

cycle time was discussed.  

In the second stage the research team inspected the company data archives for records 

that describe the properties of the design debugging and design iteration activity over time. 

Data on the NPD cycle time, number design debugs and design iterations formed the bases of 

our database. The analysis uses archival data of 740 NPD projects that were commercialized 

between 2005 and 2014. The analysis is based on a log transformation of the standard 

learning curve model: 𝐶𝑇 = 𝑐𝑡𝑜 𝐶𝑉𝑂𝐿−𝑏. The theoretical concepts, the operationalization and 

the empirical equivalents of the learning curve formula are presented in Table 1. 
 

Table 1 - Operationalization of learning types 

Concept Operationalization  Equation  

Autonomous 

learning 

Cycle time (CT) is an exponential 

function of experience (CVOL) 
ln 𝐶𝑇𝑡 = 𝛿1 + 𝛾1 ln 𝐶𝑉𝑂𝐿𝑡−1 +  𝜀𝐶𝑇𝑡

 (1)  

Trial-and-error 

learning 

Design iteration (DI) is an 

exponential function of experience 

(CVOL) 

ln 𝐷𝐼𝑡 = 𝑖1 + 𝛼1 ln 𝐶𝑉𝑂𝐿𝑡−1 +  𝜀𝐷𝐼𝑡
 

 

(2)  

Improvisational 

learning 

Design debugging (DEB) is an 

exponential function of experience 

(CVOL) 

ln 𝐷𝐸𝐵𝑡 = 𝑖2 + 𝛼2 ln 𝐶𝑉𝑂𝐿𝑡−1 +  𝜀𝐷𝐸𝐵𝑡
 (3)  

 

Serial mediated learning curve model 

In the investigation how trial-and-error learning and improvisational learning relate to 

autonomous learning a serial multiple mediator model was chosen for several reasons. First 

of all, the research inquires the causal structure between the different types of learning. Thus, 

independency of mediators is rejected a priori. Therefore the study could not rely on a more 

common parallel mediator model that assumes independent mediators. A serial multiple 

mediator model not only allows to relax this assumption, it also enables to investigate these 

causal paths (Hayes, 2013, pp. 144). Following the estimation procedure of Hayes (2013), a 

cross-product of the coefficients approach is used to detect indirect effects. This approach 

provides a single test for the X–M–Y relations by multiplying coefficients of single paths. 

The generic formulation of a serial multiple mediator model with two moderators is: 
 

M1 = 𝑖𝑀1
+ 𝑑1X + 𝜀𝑀1

 (4)  

M2 = 𝑖𝑀2
+ 𝛼2X + 𝑑21M1 + 𝜀𝑀2

 (5)  

Y = 𝑖𝑌 + 𝑐′X + 𝑏1M1 + 𝑏2M2 + 𝜀𝑌 (6)  
 

In which X is modelled as affecting Y through four pathways  with M1 and M2 as mediators. 

Using equations (1), (2) and (3) in (4), (5), and (6) results in: 
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ln 𝐷𝐼𝑡 = 𝑖𝐷𝐼𝑡
+ 𝑎1 ln 𝐶𝑉𝑂𝐿𝑡−1 +  𝜀𝐷𝐼𝑡

 (7)  

ln 𝐷𝐸𝐵𝑡 = 𝑖𝐷𝐸𝐵𝑡
+ 𝑎2 ln 𝐶𝑉𝑂𝐿𝑡−1 +  𝑑21  ln 𝐷𝐼𝑡 + 𝜀𝐷𝐸𝐵𝑡

 (8)  

ln 𝐶𝑇𝑡 = 𝑖𝐶𝑇𝑡
+ 𝑐′ ln 𝐶𝑉𝑂𝐿𝑡−1 +  𝑏1 ln 𝐷𝐼𝑡 + 𝑏2  ln 𝐷𝐸𝐵𝑡 +  𝜀𝐶𝑇𝑡

 (9)  

 

Outcomes were assessed using a non-parametric bootstrapped multivariate approach to the 

cross-products of the coefficients proposed by Hayes (2013). 

 

Results and analysis 
The first column of Table 1 shows the effects of CVOL on DI, DEB, CT. The direct effect of 

experience (CVOL) on cycle time (CT) is statistically significant, which provides support for 

H1 : c’ = -0,0516, t(738) = 0,0001, P ≤ 0.01. The fourth and sixth columns of Table 2 show 

the effects of DI and DEB on resp. DEB and CT that will be further explained in subsequent 

sections.  

 
Table 2 - Summary of results 

("ln" signifies natural coefficients; standard errors in parenthesis; ** signifies P ≤ 0.01; * signifies P ≤ 0.02) 

  ln CVOL  ln DI   ln DEB  R-sq df P 

ln DI  𝑎1 -0,4207 **     0,2128 738 0,000 

  (0,0298)        

ln DEB  𝑎2 -0,0305 * 𝑑21 0,3602 **   0,5500 737 0,000 

  (0,0129)  (0,0141)      

ln CT  𝑐′ -0,0516 ** 𝑏1 0,2515 ** 𝑏2 0,3480 ** 0,6098 736 0,000 

  (0,0131)  (0,0196)  (0,0372)    

  

Results related to the indirect effects 

An inspection of Table 3 shows the results of the 95% bias-corrected bootstrap confidence 

intervals. The effects are all significant because the confidence intervals are different from 

zero. The first indirect effect is the specific effect experience on NPD cycle time through 

design iteration (ln CVOL → ln DI → ln CT), estimated as 𝑎1𝑏1 = −0,4207(0,2515) =
−0,1058. Experience is significantly negatively related to design iteration (𝑎1), and design 

iteration was positively related to NPD cycle time (𝑏1). This result suggests that there is a 

significant trial-and-error learning effect and thus provides support for H2. Yet this effect is 

dampened by the direct effect of design iteration on cycle time which was proposed in this 

study.   

The second indirect effect is the specific indirect effect of experience on NPD cycle 

time through design iteration and design debugging (ln CVOL → ln DI → ln DEB → ln CT). 

This is estimated by 𝑎1𝑑21𝑏2 = −0,4207(0,3602)0,3480 = −0,0527. This suggests a 

significant learning effect. The path of 𝑏2 confirms H3 which postulates positive effects of 

design debugging on cycle time. In addition it can be concluded that design iteration 

significantly leads to design debugging which gives support for H4. However, due to the 

learning effect between experience and design iteration, this leads to a limited learning effect.  

The third specific indirect effect describes the effect of experience on NPD cycle time 

through design debugging (ln CVOL → ln DEB → ln CT), estimated by 𝑎2𝑏2 =
 −0,0305 (0,3480) =  −0,0106. The combined effect of the path suggests a very small, but 

significant, learning effect of experience on NPD cycle time through design debugging. This 

provides support for support for improvisational learning effect (H6).    

A comparison of the total effect with the indirect effects reveals that a substantial 

difference between the direct and total effects of CVOL on CT. The direct effect is -0,0516 (t 

= -3,9466, p < 0.01) and the total effects of CVOL on CT is -0,1692 with confidence intervals 

unequal to zero (-0,198 to -0,1392). This suggest that a big part of the variance of NPD cycle 
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is explained by autonomous learning. However this effect is enhanced by trial-and-error 

learning and improvisation. Further inspection of Table 3 shows that design iteration provides 

the strongest learning effect followed by design debugging and autonomous learning from 

experience.  
 

Table 3 Total and indirect effects 

Learning type Path Effect Boot SE BootLLCI BootULCI 

Autonomous 

learning 

ln CVOL → ln CT  -0,1692 0,0150 -0,198 -0,1392 

Trial-and-error 

learning 

ln CVOL → ln DI → ln CT  -0,1058 0,0132 -0,1348 -0,0816 

Trial-and-error 

learning 

ln CVOL → ln DI → ln DEB → ln 

CT  

-0,0527 0,0073 -0,0692 -0,0399 

Improvisationa

l learning 

ln CVOL → ln DEB → ln CT  -0,0106 0,0061 -0,0246 -0,0006 

 

Discussion and conclusion 
Although research has been reported about various design related drivers on NPD cycle time, 

it does not provide insight into the longitudinal effects of various drivers (Eling et al., 2013). 

The findings suggest that design iteration and design debugging have direct effects and 

longitudinal effects on cycle time. On the one hand improvisation and trial-and-error require 

cycle time, while on the other hand they increase learning. This research thus provides 

evidence that investigating longitudinal effects of NPD cycle time gives a profounder 

understanding of effects activities both short term and long term. Indeed, design iteration and 

design debugging lead to learning which is labelled as trail-and-error learning and 

improvisational learning. Yet, the results show that the direct effect of these activity have a 

delaying effect for individual NPD projects. Scholars can further investigate this trade-off 

while management can use this knowledge for their decision making. 

The study has shown that learning requires people to spend time on improvisation and 

trial-and-error in order to achieve curved cycle time improvement. It is also show that NPD 

cycle time is especially reduced by trial-and-error learning. Nevertheless, also 

improvisational learning is observed. This is one of the first studies that addresses its 

importance in relation to NPD cycle time management. It can be concluded that the learning 

curve model provides a deeper understanding of cycle time management. The findings of this 

study thus provide plenty of  new research possibilities on investigating structure and the 

effects of different types learning on NPD cycle time based on the learning curve model 

verified in this research.  
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