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Abstract 
This paper studies a problem of constructing a portfolio of suppliers (i.e., supplier 

selection and demand allocation) under the risks of supplier failure due to the occurrence 

of disruptive events. The problem is formulated as mixed integer non-linear programming 

(MINLP) considering different capacity, failure probability and quantity discounts for 

each supplier. Consideration of all these features together has made the problem realistic 

but at the same time complex to solve. We have used real coded genetic algorithm 

(RCGA) to solve the problem. The efficacy of RCGA is checked by comparing its results 

with BONMIN (an open source MINLP solver). The model, RCGA, and BONMIN are 

illustrated through a numerical study. The results show that supplier with high quantity 

discount and lesser gets more order quantity. 
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Introduction 

The problem of sourcing decisions has received considerable attention from the academic 

community as well as practitioners in the recent times. Sourcing decision includes 

selection of right number of suppliers and allocation of demand (Meena and Sarmah, 

2011). For an effective supply chain management, one of the key issues is the supplier 

selection, which consists of determining a supplier base (a set of potential suppliers to 

work with), the supplier(s) to procure from, and the procurement quantities from the 

selected suppliers (Alp and Tarkan, 2010). 

  There are mainly two schools of thought and they are single sourcing and multiple 

sourcing strategies. Single sourcing or reduced supply base has many advantages such as 

better coordination, cost-effectiveness, improved delivery performance, and improved 

buyer-suppliers relationship (Sajadieh and Eshghi, 2009). However, this strategy 

increases the risks of supply disruption and dependence on fewer suppliers. In the recent 

times, it is observed that supply chains are increasingly vulnerable to high-profile 

disruptive events such as earthquake, tsunami, hurricanes, terrorist attacks, etc. Moreover, 

there are various other events that regularly interrupt the flow of 
1
supply such as strikes, 

bandhs, snowstorms, and traffic congestion, etc. (Meena and Sarmah, 2014). Many recent 

disruptive events like 9/11, the hurricane Katrina and Rita in 2005, and the recent 

devastating earthquake and tsunami in Japan in 2011 etc., have compelled the researchers 

to include the risks of these disruptive events into the procurement and supply chain 

management problems.  
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Berger et al. (2004) classified disruptive events in to three categories, namely (i) 

super-event, (ii) semi-super event, and (iii) unique event. The occurrence of a super-event 

completely fails all the suppliers to supply, whereas the occurrence of a semi-super event 

completely fails some but not all the suppliers to supply. The occurrence of a unique 

event completely fails a single particular supplier to supply. This paper considers the 

risks of super and unique events. There is a dearth of literature on the issue of 

determining the optimal number of suppliers and order allocation together under quantity 

discounts and risks of supply disruption. Here, we have made an attempt to fill up this 

gap in the literature by developing a mixed integer nonlinear programming (MINLP) 

model to solve this problem. The model considers different failure probability, capacity, 

quantity discounts, and compensation potential for each supplier. The compensation 

potential means that when a particular or set of supplier(s) fail to supply the negotiated 

order quantity due to the occurrence of disruptive events then the remaining supplier(s) 

who don’t fail compensate the shortfall by supplying the extra amount at no extra cost. 

Inclusion of all these aspects together has made the model more realistic but at the same 

time more complex to solve using exact methods. Therefore, we employed real coded 

genetic algorithm (RCGA) to solve it. The reason behind the using RCGA is that it has 

been proven effective in many combinatorial problems (Goldberge, 1989; Chang and 

Hou, 2008). Further, we checked the efficacy of the RCGA by comparing its results with 

BONMIN (an open source MINLP solver). 

 
Problem description and model development 

We have considered a two-stage supply chain consisting of a single buyer and multiple 

suppliers, where the buyer places orders for a single item before the start of the season 

and takes decision regarding which of the suppliers to retain from a given set of potential 

suppliers, and how much to order to each selected supplier, in order to minimize the total 

expected cost. The expected total cost of the buyer includes purchasing, supplier 

management, and expected loss costs. The following assumptions are made in the 

development of the model.  

 

 The demand of the item is deterministic.  

 A set of pre-qualified suppliers is already determined.  

 All suppliers have different capacities and failure probabilities.  

 Management cost is same for every supplier and has linear relationship with 

number of suppliers.  

 Minimum order quantity is same for all suppliers. 

 

The following notations are used in the development of the model. 

Index  

z  : index for suppliers,  1,2,3,...,z N  

i  : index for suppliers who fail,  1,2,3,...,i T  

j  : index for suppliers who do not fail,  1,2,3,...,j S  

r  : index for price breaks,  1,2,3,...,i R  
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Purchasing cost 

The purchasing cost depends upon the order quantity and price of the item. In real 

situations, many suppliers generally offer quantity based price discount to encourage the 

buyer to purchase more and the purchasing cost of buyer can be formulated as follows:      
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Supplier management cost 

The supplier management cost increases linearly as the number of supplier increases. The 

supplier management cost includes cost of negotiation, managing a supplier contract, and 

monitoring the quality etc. and one can write this cost as follows: 

Notation  

D = 
total demand of the buyer in a given period; zrd = discount given by 

thz   supplier in 
thr  

price break 

N = total number of potential suppliers ; n =  number of selected suppliers 

b  = per supplier management cost ; L =  loss per not received unit due to supplier’s failure 

Uz = actual capacity of 
thz  supplier;  Qz = order quantity allocated to 

thz  supplier 

Qj = quantity received from the supplier(s) who do not fail  

 minimum order quantity (certain percentage of the total demand) allocated to each selected 

supplier 

Iq = increment in allocation quantity  

 probability of the occurrence of a super-event that fails all the suppliers 

 probability of the occurrence of the unique-events that fails the 
thz supplier 

zy  binary decision variable where zy =1if 
thz supplier is selected else zy =0  

 
compensation provided by the supplier(s) who do not fail, where  

 set of suppliers who fail, where, is the set of any one supplier 

who fails and so on 

 set of suppliers who do not fail where is the set of not failed 

suppliers, when there is one out of suppliers fails and so on 

minQ
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2.3 Expected loss cost 

The buyer may face a significant economic loss if the suppliers fail to deliver the 

negotiated order quantity. The minimum order quantity received by the buyer from the 

selected suppliers can be formulated as follows                       

 

min                                                       (4) 

 

The expected loss incurred by the buyer due to the failure of supplier(s) to supply the 

negotiated order quantity can be written as 

 

                                                                            (5) 

 

When all the suppliers fail to deliver the negotiated order quantity due to the occurrence 

of super-event then the expected loss faced by the buyer is . The expected total 

loss cost for n  suppliers can be written as follows 
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where, SF1, SF2, SF3, and SFn are as follows: 
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Expected total cost 

The expected total cost is the sum of purchasing, supplier’s management and expected 

total loss costs. Therefore, for a given  number of suppliers, it can be written as  

 

                         (8) 

 

The objective of the buyer is to minimize the expected total cost and it can be written as 

 

Min.                                                                 (9) 
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Subject to  

                                                          (10) 

 

              
                                             (11) 

 

Constraint (10) ensures that sum of the allocated order quantity must be equal to total 

demand. Constraint (11) indicates the minimum and maximum order quantity for each 

supplier. 

 

Solution methodology 

Here, first we have employed real coded genetic algorithm (RCGA) to solve the problem 

as it is a powerful global search algorithm inspired by evolution theory. Genetic 

algorithm has gained huge popularity for its easy implementation and successful 

application for different optimization problem (Gen and Cheng, 2000). Later, BONMIN 

(Basic Open-source Nonlinear Mixed Integer) (Bonami et al., 2008) was used test the 

performance of RCGA to solve the problem. The procedure of GA is explained below: 

 

Generate an initial population, 

Evaluate fitness of individual in the population, 

repeat: 

Select parents from the population, 

Recombine (mate) parents to produce children, 

Evaluate fitness of the children, 

Replace some or all of the population by the children, 

until a satisfactory solution have been found 

 

We refer the readers to Meena and Sarmah (2014) for more detail regarding RCGA and 

BONMIN. 

 

Numerical illustration 

We have conducted a numerical experiment to demonstrate the proposed model and 

methods to solve the problem. The RCGA and BONMIN are implemented in MATLAB 

7.5. All tests have been carried out on a Lenovo PC (with Intel Core 2 Duo processor@ 

1.66 GHz with 1.49 GB of RAM, running on Windows XP). The following values of 

different parameters are considered for the numerical experiment: The buyer demand 

D=200 units, base price of item offered by all suppliers C= 5 monetary unit (mu)/unit, 

management cost per supplier b= 5 mu, loss per not obtained unit due to supplier failure 

L=10 mu, super-event probability π*=0.01, minimum allocated order quantity and 

incremental order quantity Qmin=Iq=0.10D. The capacity, failure probability, price break 

quantity, and discount percentage of suppliers are given in Table 1. 
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Computational results of RCGA and BONMIN 

We ran the programs of both methods (i.e., RCGA and BONMIN) for 100 iterations to 

get more accuracy in results. For solving the problem with RCGA, we first determined 

the optimal values for its parameters (e.g. population size, crossover probability, mutation 

probability and generation) for all problems and the values are given in Table 2. The 

results of both methods for supplier selection and order allocation are given in Table 2. 

The optimal solution (i.e., optimal number of suppliers and respective order allocations) 

are presented in Table 2 for different values of demand.  The results reveal that as the 

demand increases, the optimal number of suppliers also increases.  

Further, the buyer allocates maximum order quantity to the supplier who provides 

high discounts compared and has lesser failure probability. It indicates that the allocation 

of order quantity mainly depends on the cost of supplier’s rather than its failure 

probability. Another interesting finding we observed that, instead of getting small 

discount from many suppliers, it is better to allocate more demand to low cost supplier(s) 

and get more discounts and keep less risky but more costly supplier(s) as backup for 

emergency. It is observed from the results that RCGA produces better quality solution 

compared to BONMIN and also consumes lesser cpu time. 

 

Conclusions and scope for future work 

This paper studies a problem of supplier selection and order demand allocation under 

quantity discounts and supply disruption risks. The problem is NP-Hard in nature and 

very difficult to solve with existing exact method. Therefore, RCGA approach was 

employed to solve it. Further, RCGA results were compared with BONMIN to check its 

efficacy to solve the problem. The results show that the demand allocation mostly 

depends on the cost of the supplier’s rather than its failure probability. Also it is found 

that supplier(s) with high quantity discounts and lower failure risks get more order 

quantity compared to the other suppliers. Numerical results show that the RCGA 

approach finds better quality solution as compared to BONMIN in lesser cpu time. The 

interesting area for future research may be extension of current model for multi-items and 

multi-period settings. 
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Table 1 - Capacity, unique-events probability, and discount percentage of each supplier 

Supplier no. Supplier capacity (units) 
Unique-events  
probability (πz) 

Price  break quantity (units) Associated discount dzr (%) 

S1 70 0.05 25 35 45 15 25 31 

S2 85 0.09 28 38 47 12 19 29 

S3 90 0.13 30 40 50 09 18 33 

S4 95 0.07 33 45 55 14 19 25 

S5 105 0.06 35 50 60 10 15 27 

S6 110 0.10 37 55 65 17 21 30 

S7 115 0.11 40 60 70 18 23 35 

 

Table 2 - Comparison of the results of the proposed heuristic procedure, RCGA and BONMIN 

Demand 100 150 200 250 300 350 400 450 

RCGA 
results 

Selected Suppliers [S1,S2,S5] [S1,S3,S4] [S3,S5,S7] [S1,S3,S6,S7] 
[S3,S5,S6, 
S7] 

[S1,S3,S5, 
S6, S7] 

[S1,S2, S3, 
S5,S6,S7] 

[S1,S2,S3,S4, 
S5,S6,S7] 

  
Allocated order 
quantity 

[40,40,20] [45,60,45] [60,60,80] [50,50,75,75] [60,60,90,90] 
[70,70,70,  
70,70] 

[40,40,80, 
80, 80, 80] 

[45,90,45, 
90,90,90] 

  Min. ETC 469.21 611.25 776.2 965.4 1167.0 1360.0 1574.1 1776.9 

  Max. ETC 471.06 615.90 787.43 965.4 1167.0 1360.0 1574.1 1776.9 

  Avg. ETC 469.46 612.29 779.3 965.4 1167.0 1360.0 1574.1 1776.9 

  S.D. ETC 0.3515 2.3 26.08 1.44E-26 5.74E-26 0 5.74E-26 0 

  CPU time (s.) 9.20 9.44 9.96 13.45 17.53 21.61 39.18 37.43 

BONMIN 
results 

Selected Suppliers 
[S1,S3,S4, 
S6, S7] 

[S1,S3,S4, 
S6, S7] 

[S1,S2,S4, 
S5] 

[S1,S2,S3, 
S6,S7] 

[S1,S2,S3, 
S4,S5,S6,S7] 

[S1,S2,S3, 
S4,S5,S6,S7] 

[S1,S2,S3, 
S4,S5,S6,S7] 

[S1,S2,S3, 
S4,S5,S6,S7] 

  
Allocated order 
quantity 

[10,40,20, 
10,20] 

[15,60,30, 
15,30] 

[20,80,20, 
80] 

[25,50,50, 
25,75,25] 

[30,30,30,90,
30,60,30] 

[35,35,35, 
35,70,70,70] 

[40,80,40,80, 
40,40, 80] 

[45,45,90,45, 
45,90] 

  Min. ETC 549.04 741.17 862.78 1068.8 1390.9 1464.1 1654.4 1795.3 

  Max. ETC 564.0 756.01 1039.0 1215.1 1390.9 1488.6 1654.4 1795.3 

  Avg. ETC 562.5 753.04 968.62 1184.2 1390.9 1479.5 1654.4 1795.3 

  S.D. ETC 20.84 37.12 156.64 1225.7 1.34E-24 102.5 5.35E-26 1.34E-24 

  CPU time (s.) 83.77 82.33 72.89 63.7 63.32 67.72 43.43 38.8 
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