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Abstract 

This paper shows a comparison between the expected results of costs and service levels when are 

used any values of the parameters of the inventory control policy (ROP,Q) and the “real” results 

that could be achieved with these values. The real world is represented by a simulation model. 
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Introduction 

Many companies use some inventory control system to planning production, to purchase products 

or raw materials and to manage inventory, both in manufacturing environments such as in 

service environments. One of these systems is reorder point (ROP), in which a fixed or 

variable quantity is ordered every time the inventory position drops to the reorder point or 

lower. The reorder point falls in the category of continuous review systems, so the 

inventory position must be known on real time. In this inventory policy, two issues should 

be resolved: (1) When should a replenishment order be placed? and (2) How large should 

the replenishment order be? (Silver et al. 1998). Figure 1 shows the operation of two well-

known continuous review systems.  
 

 
a) (ROP, Q) system 

 
b) (ROP, Up to Level) system 

Figure 1 - Continuous Review Systems (Adapted from Silver et al., 1998) 
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In the system showed in Figure 1a, always is ordered a fixed quantity Q, while in the system 

illustrated in Figure 1b the quantity is variable because the inventory position must reach the order-

up-to-level value, so the order quantity change every time that is necessary make an order. This 

paper is devoted only to the case 1a. 

 

Often many inventory managers intuitively define the parameters of both systems, while 

some others estimated these parameters using statistical analysis, mathematical models and 

decision rules. It does not matter if the parameters were defined intuitive or technically, always 

exist the uncertainty about if with these values it will possible to achieve the service level and 

expected costs. 

 

This paper try to find out to the case of an item with demand normally distributed if the 

expected values of costs and service levels are achieved when the parameters of the inventory 

policy (ROP,Q) are found technically from a required Cycle Service Level.  The article is 

composed by 4 sections. This introduction is followed by the notation and the main assumptions 

used to define the parameters of the model. In section 3 there is a numerical example, which shows 

how calculate the parameters of the inventory policy (ROP,Q) as well as the expected values of 

the main inventory costs and service levels. A computer simulation is carried out to compare the 

expected performance with the “real” performance of the inventory policy.  Finally, in section 4 

there are some conclusions of the work done. 

 

Notation and main assumptions 

 

The notation to be used includes: 

 

𝐷 Expected annual demand 

𝑣 Unit variable cost 

𝐴 Fixed ordering cost 

𝑟 Annual Inventory carrying charge 

𝐵1 Fixed cost per stockout occasion 

𝐸𝑂𝑄 Economic Order Quantity 

𝑄′ Any order quantity different to EOQ 

𝑅𝑂𝑃 Reorder Point 

𝑘 Safety factor 

𝐿 Replenishment Lead time  

𝑠𝑠 Safety Stock 

𝜎𝑙 Standard deviation of demand per unit of time 

𝑥𝑙 Expected demand per unit time 

𝑃1 Cycle Service Level (CSL) 

𝑝𝑢≥(𝑘) Probability that a unit normal variable takes a value greater or equal to k 

𝑃2 Fill Rate 

𝐺𝑢(𝑘) The partial loss function of unit normal distribution  

𝐶𝑚 Material cost per unit time 

𝐶𝑜 Order cost per unit time 
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𝐶𝑐 Carrying cost per unit time 

𝐶𝑠 Stock out cost per unit time 

𝑄𝑖
′ Quantity ordered at any period 𝑖 in the simulation  

𝑚 Number of periods 

𝑛′ Number of orders in the horizon of the simulation  

ℎ Number of cycles with negative stock 

𝐼𝑎𝑣𝑒𝑟 Average inventory over the horizon of simulation  

𝑠𝑜𝑢 Number of units in stock out in the horizon of simulation 

 

It supposed that the demand is normally distributed, the lead-time is known and discrete 

and there is not variability on it (Zipkin, 2000). Both values of demand and standard deviation are 

known in advance. Top managers of the company define the desired value of CSL and the 

parameters of the inventory policy are established technically, this means that the quantity to order 

is an economic lot (EOQ) and the safe stock is found by a decision rule. Finally, we assume that 

the initial inventory for the simulation is the maximum quantity allowed by the model, that is the 

reorder point plus the economic order quantity. 

 

The next section describes how to find technically the parameters of (ROP, Q) model for a 

CSL given. Likewise, the expected performance of the inventory policy is measure in terms of 

costs and fill rate. These values later will be compared with the results obtained of the “real world” 

through a simulation model. 

 

Numerical example and results 

With the purpose of show the robustness or not of the model, let us suppose an item with the 

information shown in Table 1 

 
Table 1 – Basic data of the numerical example 

 Value Unit of measure 

𝐷 35000 units/year 

𝑣 25 $/unit 

𝐴 250 $/order 

𝑟 0,36 $/$/year 

𝐵1 15000 $ 

𝐿 30 days 

𝜎𝑙 650 units/month 

𝑃1 0,95  

 

The first step is to define the quantity to order every time position inventory drops under 

some value. Because the company wants to find an optimal quantity to the order, it is necessary 

use the following expression (Erlenkotter 1990). 

 

𝐸𝑂𝑄 = √
2𝐴𝐷

𝑣𝑟
      (1) 
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Using the data of Table 1 in equation (1), the economic order quantity EOQ is 1394,43 

units. Now, assuming there is not variability on lead-time, the standard deviation of errors of 

forecasting over a replenishment lead-time is 650 units, which is calculated using equation 2. 

 

𝜎𝐿 = 𝜎𝑙√𝐿      (2) 

 

The safety factor should be calculated using the function available in Excel ®, which is 

shown in equation (3) (Chopra and Menindl, 2007) 

 

𝑘 = 𝑁𝑂𝑅𝑀. 𝑆. 𝐼𝑁𝑉(𝑃1)       (3) 

 

For this case, for a CSL of 95%, the safety factor 𝑘 is 1,644853627. The safety stock is defined 

as the average level of the net stock just before a replenishment arrives and it is calculated using 

the equation 4. 

 

𝑠𝑠 = 𝑘𝜎𝐿      (4) 

 

Using the values calculated previously with equations 2 and 3, the appropriate value of 

safety stock for the numerical example is 1069 units. Finally, the reorder point must be set in 3986 

units according with equation (5). This point is the expected demand during the lead-time (𝑋𝐿) plus 

the safety stock.  

 

𝑅𝑂𝑃 = 𝑋𝐿 + 𝑠𝑠     (5) 

 

So, for an item with the data shown in Table 1, using an inventory control policy of reorder 

point with fixed order quantity, the theoretical inventory control parameters are (3986; 1394) in 

order to obtain An expected CSL of 95%. That is, each time the inventory position drops to 3986 

or under, a fixed quantity of 1394 (or a multiple of this value) is ordered with aim to increase the 

inventory position above 3986 units.  

To measure the expected performance of the model, formulae (6) to (9) were used to 

calculate the theoretical annual costs involved in inventory management of the item and formula 

(10) was used to calculate the fill rate estimated for this sku with an expected CSL of 95% (Silver 

et al. 1998). These results for the numerical example are show in the first row of Table 2. 

𝐶𝑚 = 𝐷𝑣      (6) 

 

𝐶𝑜 =
𝐷

𝑄
𝐴       (7) 

 

𝐶𝑐 = (
𝑄

2
+ 𝑠𝑠) 𝑣𝑟      (8) 

 

𝐶𝑠 =
𝐷

𝑄
𝑝𝑢≥(𝑘)𝐵1      (9) 

 

𝑃2 = 1 −
𝜎𝐿𝐺𝑢(𝑘)

𝐸𝑂𝑄+ 𝜎𝐿𝐺𝑢(𝑘)
     (10) 
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The simulation was made in IMSS (Inventory Management Support System) a tool 

developed in VBA (Visual Basic for Applications) which generate normal demand randomly 

according to historical data of the demand and the standard deviation the sku to analyze. The “real” 

data of costs and service levels achieved with the implementation of the inventory management 

policy were calculated with formulae (11) to (16). 

 

𝐶𝑚 = ∑ 𝑄𝑖
′𝑚

𝑖=1 𝑣      (11) 

 

𝐶𝑜 = 𝑛′𝐴       (12) 

 

𝐶𝑐 = 𝐼𝑎𝑣𝑒𝑟𝑣𝑟       (13) 

 

𝐶𝑠 = ℎ 𝐵1       (14) 

 

𝑃1 =
𝑛′−ℎ

𝑛′        (15) 

 

𝑃2 =
𝑠𝑜𝑢

∑ 𝑄𝑖
𝑚
𝑖=1

       (16) 

 

In order to define if theoretical parameters of the inventory model can obtain in practice 

the performance expected, we carry out three simulations. The first simulation was made using 

periods of one month and a time horizon of a year. Were made five runs, each one with a number 

statistically significant of iterations. The results of the runs made and the percentage of variation 

of the costs and service levels versus the expected values of the inventory policy is shown in Table 

2. 

 
Table 2 – Comparison between expected theoretical values and 5 simulation runs of (ROP,Q) inventory 

management model. Periods of 1month 

 
 

According to the above results, it is important to stand out that both 𝐶𝑜 as 𝐶𝑠 are the costs 

that have greater difference between the values yielded by the simulation and expected values. The 

main reason for this difference is that to calculate the expected values of both terms, the formula 

Expected Values 95,00% 99,04% 875.000 $ 6.275 $ 15.897 $ 18.825 $ 915.997 $

Iteration P1 P2 Cm Co Cc Cs TC

1 205 99,27% 99,96% 855.536$         3.000$         16.494$       1.317$         876.347 $

% variation 4,5% 0,9% -2,2% -52,2% 3,8% -93,0% -4,3%

2 205 98,94% 99,92% 856.216$         2.996$         16.565$       1.829$         877.607 $

% variation 4,2% 0,9% -2,1% -52,2% 4,2% -90,3% -4,2%

3 246 99,05% 99,93% 865.427$         2.997$         16.183$       1.646$         886.254 $

% variation 4,3% 0,9% -1,1% -52,2% 1,8% -91,3% -3,2%

4 205 98,21% 99,85% 863.018$         2.998$         16.247$       3.073$         885.336 $

% variation 3,4% 0,8% -1,4% -52,2% 2,2% -83,7% -3,3%

5 205 98,70% 99,89% 864.039$         2.995$         16.127$       2.195$         885.356 $

% variation 3,9% 0,9% -1,3% -52,3% 1,4% -88,3% -3,3%
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includes the ratio 𝐷 𝑄⁄  (that is the number of expected orders in a year). For the numerical example 

the number of orders expected is 25,1 orders/year, while in the simulation only can be a maximum 

of 12 orders (because there are 12 months). Therefore, there is an error near of 60% only for this 

reason. 

 

The CSL achieved in the simulation was always higher (about 3,5% above the goal) than 

the expected value of 95%, it is again because the maximum number of orders could be only 12, 

so many of the orders release were of 2, 3 and until 4 times the economic order quantity, improving 

this measure. 

 

The values of 𝐶𝑚 simulated were near 1,5% below the expected value. On the other hand, 

the values of 𝐶𝑐 were a 2,5%  above the expected value. Something that explain in part this 

mismatch is the initial inventory value used in the simulation. For our case, this value was set in 

the higher level, so the quantity to purchase is lower and the quantity in inventory is greater than 

the expected quantities. 

 

The results of the second simulation are shown in Table 3. In this simulation, the horizon 

is one year, but the period is a day. Again, we made 5 simulations and compared the results of 

them with the theoretical expected values. 

 
Table 2 – Comparison between expected theoretical values and 5 simulation runs of (ROP,Q) inventory 

management model. Periods of 1day 

 
 

In this case, for both 𝐶𝑜 and 𝐶𝑠, the values obtained were above his respective expected 

values, but is significantly higher in 𝐶𝑠 (near of 135% higher). The explanation for this is that the 

number of orders in the simulation was a 12,5% more than the expected orders. Because 𝐵1 is a 

fixed cost that normally is high, these two values can explain in part the reported difference.  

 

The number of orders also affect the CSL. An increase in the number of orders, make that 

exist more chance to have a stockout which affect the level service both in the cycle as in the fill 

rate. Now in simulation the number of orders increased because the demand also increases, from 

an expected value of 35,000 units/year, to near of 39,500 units/year (that is 12,5% plus).  

 

Is important to notice that the standard deviation used in this simulation was estimated from 

the monthly deviation using equation (2). The monthly standard deviation is 650 units/month while 

Expected Values 95,00% 99,04% 875.000 $ 6.275 $ 15.897 $ 18.825 $ 915.997 $

Iteration P1 P2 Cm Co Cc Cs TC

1 412 90,18% 98,14% 985.580$         7.068$         13.877$       42.451$       1.048.977 $

% variation -5,1% -0,9% 12,6% 12,6% -12,7% 125,5% 14,5%

2 434 89,45% 97,99% 986.064$         7.071$         13.878$       45.760$       1.052.773 $

% variation -5,8% -1,1% 12,7% 12,7% -12,7% 143,1% 14,9%

3 417 90,25% 98,13% 983.389$         7.052$         13.966$       42.063$       1.046.471 $

% variation -5,0% -0,9% 12,4% 12,4% -12,2% 123,4% 14,2%

4 427 89,24% 97,88% 987.043$         7.078$         13.844$       46.475$       1.054.441 $

% variation -6,1% -1,2% 12,8% 12,8% -12,9% 146,9% 15,1%

5 425 89,61% 98,06% 984.552$         7.061$         13.878$       44.965$       1.050.455 $

% variation -5,7% -1,0% 12,5% 12,5% -12,7% 138,9% 14,7%
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daily standard deviation is 118,67 units/day (that means that one day represents a 18.25% of the 

monthly deviation). In this case when the standard deviation is higher than average demand, the 

performance of the model had a negative effect in our numerical example, because the demand 

increases in 12,5%. 

 

Finally we made a third simulation with the same conditions than in simulation 2, but we 

change the value of the daily standard deviation from 118.67 to 97.22 (same as the average daily 

demand). As is shown in Table 3, the performance of the model presents a great improvement. 

 
Table 3 – Comparison between expected theoretical values and 5 simulation runs of (ROP,Q) inventory 

management model. Periods of 1day. Standard deviation reduced 

 
 

 

Conclusions and Future Work 

Inventory control policies require of parameters to operate. For the inventory policy (ROP,Q) is 

necessary to define when to put an order and how much order any time than the inventory 

position drops under a determinate value. 

 

One position almost generalized of inventory managers is that they do not believe in the 

theoretical models because these are based on unrealistic assumptions. Although this can be true, 

the other true is that these are remarkably robustness to deal with these “unrealistic assumptions”. 

 

Of the three simulations made and its comparison of the values obtained in these with the 

expected theoretical values is important to stand out that the period of time used in the simulation 

have a significant effect in the percentage of variations, because the number of cycles can vary 

drastically, specifically when the relation 𝐷
𝑄⁄  is higher than the number of periods in the time 

horizon. Two constraints must be considerate when the period used is one month. (1) the lead time 

must be greater than one month and (2) the lead times must be an integer. 

 

Another factor that affect drastically the results is the standard deviation of the demand, 

mainly when the simulation uses periods of one day, mainly when his value exceeds the average 

daily demand. The consequence of that situation is that the number of units demanded and the 

number of orders increased considerably affecting the performance obtained by the model.  

 

Expected Values 95,00% 99,04% 875.000 $ 6.275 $ 15.897 $ 18.825 $ 915.997 $

Iteration P1 P2 Cm Co Cc Cs TC

1 520 96,45% 99,46% 937.774$         6.725$         15.197$       14.701$       974.397$     

% variation 1,5% 0,4% 7,2% 7,2% -4,4% -21,9% 6,4%

2 594 96,82% 99,55% 931.031$         6.677$         15.435$       13.106$       966.248$     

% variation 1,9% 0,5% 6,4% 6,4% -2,9% -30,4% 5,5%

3 347 96,99% 99,64% 931.899$         6.683$         15.352$       12.363$       966.297$     

% variation 2,1% 0,6% 6,5% 6,5% -3,4% -34,3% 5,5%

4 123 96,51% 99,51% 934.440$         6.701$         15.293$       14.512$       970.947$     

% variation 1,6% 0,5% 6,8% 6,8% -3,8% -22,9% 6,0%

5 323 96,36% 99,51% 935.738$         6.711$         15.253$       15.046$       972.748$     

% variation 1,4% 0,5% 6,9% 6,9% -4,1% -20,1% 6,2%
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It is clear that inventory control does not work well when a high variability exist in data, 

specifically in the demand data. Most theoretical models assume that the demand is normally 

distributed, which is a strong assumption but according with the results of the simulations, an 

inventory manager can expect to have a good performance of a (ROP,Q) model in practice based 

on the expected values obtained by the theoretical model.  

 

Although there is still a lot of resistance to the implementation of inventory management 

models based on calculated theoretical parameters, it is necessary to continue working in order to 

reduce the existing gap between theory and practice, in order to improve the competitiveness of 

the companies, in this case from inventory management. 
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