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Abstract

Stochastic capacitated lot sizing problem is considered in the presence of probabilistic processing
times and demand in this paper. A two-step hierarchical methodology is developed. First,
stochastic capacity requirements are determined with statistical analysis & Monte-Carlo
simulation. Second, a stochastic nonlinear mixed integer mathematical model is developed to
solve the problem.
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Introduction

The goal of the lot sizing models is to determine the optimal timing and level of production (Stier
et al. 2011). Production planning problems are often classified according to the hierarchical
framework of strategic, tactical and operational decision making activities (Bitran and Tirupati
1993). Depending on the decision horizon and level of aggregation, lot sizing models are usually
classified as; (1) tactical models (yearly master production schedule), (2) operational models
(sequencing and loading), and (3) models between operational and tactical models (monthly lot
sizing).

The simplest problem in lot sizing is the single item uncapacitated lot sizing problem. In
this model only one item is considered for lot sizing for manufacturing with limitless capacity.
However, this does not reflect the exact situation in almost all manufacturing facilities.
Companies have limited capacities and mostly they produce more than one product. Any realistic
model has to take this into account.

Capacitated Multi-ltem Lot Sizing Problem considers production of multi items with
limited production capacity (Ster et al. 2008). In Capacitated Multi-ltem Lot Sizing Problem,
generally, the objective is to minimize the total cost of production, set up and inventory. Demand
is met from the production in the current period or the inventory left over from the previous



period. Any excess is carried over as inventory to the next period. In each period, set up is
required if anything will be produced.

Background and research motivation

Capacitated lot sizing is one of the widely studied problems in production planning and control
literature. Researchers work on the models that solve one part of the lot sizing area. Many of the
studies in the literature focus on the impact set up times (Armentano et al. 1999, Diaby et al.
1992, Gopalakrishnan et al. 2001, Manne 1958, Newson 1975, Trigeiro et al. 1989).
Additionally, some works focus on the inventory management aspects of lot sizing (Erenguc and
Aksoy 1990, Gutiérrez et al. 2003, Jaruphongsa et al. 2004, Sandbothe and Thompson 1993).
Furthermore, demand aspect of the lot sizing is another area that has been widely studied. (Aksen
et al. 2003, Federgruen and Tzur 1993, Jans and Degraeve 2004, Hsu and Lowe 2001, Hsu et al.
2005). In fact, the literature is abundant with works that address various aspects of the lot sizing
area including the production and time horizon.

To reflect the inherent uncertainty exists in many production environments, stochastic lot
sizing problem has been studied by many researchers and it is getting more attention recently. To
name a few, Tarim and Kingsman (2004) proposed a mixed integer model with the objective of
minimizing total cost of production, inventory holding and ordering costs for stochastic multi-
period single item inventory lot sizing problem under the “static-uncertainty” strategy of
Bookbinder and Tan (1988) where lot sizes and production periods are fixed in advance. Koca et
al. (2015) studied lot sizing problem where demand is uncertain and processing times can be
reduced by adjusting machine speed, number of operators assigned to jobs, outsourcing and
some other factors. Tempelmeier and Hilger (2015) developed linear programming models and
proposed a modified Fix-and-Optimize heuristic to solve the stochastic dynamic lot sizing
problem according to “static-uncertainty” strategy of Bookbinder and Tan (1988). A review of
studies in this area is presented by Glock et al. (2014). In this study, a stochastic capacitated lot
sizing problem is considered in the presence of probabilistic processing times and demand. The
goals of this study are;

e To visualize the impact of stochasticity on the optimal lot size values by comparing the
results with those of deterministic model (total cost, shortages, on hand inventory)

e To enable production planners capture the variability in manufacturing system as a result
of uncertainty in demand and processing times

e To enable decision makers decide their own risk level of overutilization which can be
determined prior to planning

Methodology

Mathematical modeling and statistical analysis is used in a two-step hierarchical methodology in
order to handle the uncertainty in processing times and demand. First, stochastic capacity
requirements are determined with statistical analysis and Monte-Carlo simulation. In the second
phase, a proposed stochastic nonlinear mathematical model is developed to solve lot sizing
problem subject to a risk level. In this regard, risk level is introduced as a decision making
parameter for production planner, integrated into the model as the maximum threshold for



overutilization probability. Various risk levels and problem sizes are experimented. The
proposed approach is compared with the deterministic model’s results to visualize the impact of
stochasticity on the optimal lot size values.

Deterministic capacity requirements are calculated by simply multiplying the demand and
the processing time. Stochastic capacity requirements, however, require statistical analysis to
find probability distribution functions of the capacity requirements since demand and processing
times are probabilistic, which are assumed to follow normal distribution. Arena Input Analyzer
software is used to statistically analyze and find the fitted distributions of the product of these
two probabilistic variables. (See Egilmez et al., 2012 for detailed information about the statistical
analysis).

Deterministic and stochastic capacitated multi-item lot sizing models
In a deterministic case, annual demand, processing times and therefore capacity requirements are

known exactly. The notation, i.e., the parameters, the decision variables and indices provided
below are used for both deterministic and stochastic capacitated multi-item lot sizing models.

Indices:

i product index
J: period index
Parameters:

M: Big number
N: Number of products
T: Number of periods
: Set up cost
: Shortage cost
: inventory carrying cost
: production cost
C;: System capacity on period j
R: Risk level
PrOU;: Probability of overutilization on period |

mPT;: Expected processing time of product i
opr,;- Standard deviation of processing time for product i
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Decision Variables:

Y;:  1lifan order placed for product i on period j, O otherwise
Xj;:  Optimal lot size for product i on period j

Sij- Inventory level for product i on period j

STi;:  Amount of shortage for product i on period |

Objective function:
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Sig-1) T Xjj + STy = Dyj + S ViENVjET 2)

X < M+ Y ViENVjeT 3)
P

Dy PTY < G ()
i=1

Xij, Sij = 0,Y;; € {0,1} VieNVjeT (5)

The objective of the model is to minimize the total of setup, production, inventory holding
and shortage costs (Equation (1)). Equation (2) ensures that the demand is satisfied for each
period and each product. Demand can be met from production in the current period and/or
inventory left over from the previous period, where shortage is allowed. If the amount of
products is more than the amount of demand in the current period, it is carried over as excess
inventory to the next period. Equation (3) guarantees to have setup if any production is required
for that period. Equation (4) limits the production up to the capacity. Equation (5) determines
whether an order is placed for a product or not. It also guarantees that the production and
inventory levels cannot be negative.

Deterministic capacity constraint, Equation (4), in CLSP model is converted to stochastic
constraint since demand and processing times are probabilistic in the stochastic model. The
objective function of the deterministic problem remains the same along with the equations (2),
(3), and (5). Equations (6) and (7) are the stochastic constraints that prevent the probability of
overutilization of the manufacturing facility to exceed the predetermined risk level. Various risk
levels are investigated.
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Experimentation and results

In this section, data generation, experiments and the results of the experiments are explained.
Data generation is explained in the first phase. Then parameters of the experiments are described.
Finally, the results of the experiments are presented and analyzed in detail.

The mean of weekly demand data is generated from uniform distribution for various
demand ranges of (10, 70), (10, 75) and (10, 80) for each product. The standard deviation of
demand is assumed to be 25% of the mean.



Similarly, means of the processing times are generated via uniform distribution (1, 5). The
standard deviation of processing times is assumed to randomly vary between 10% and 50% of
the mean processing times for each product due to various difficulty levels of the products. Table
1 shows the randomly generated demand data and mean processing times between (10, 70) for
five products and five days.

Table 1 — Sample demand and processing time data for demand data range (10, 70)
Demand data

(10,70) Periods PT
Products 1 2 3 4 5 (min)
1 12 30 51 46 11 3
2 17 34 21 49 17 1
3 50 30 29 15 27 3
4 22 24 45 21 66 4
5 70 68 54 38 63 1

The manufacturing facility is assumed to work 8 hours/day, e.g., 480 minutes/day. Small
data set is used due to computational limitations in Lingo software. The experimentation is
performed for 5 periods and 5 products. Three different levels of average utilizations of all
periods are considered for both deterministic model and stochastic models in order to capture the
behavior of the system in various capacity scenarios. In the first case, we made sure that the
weekly capacity is, on average, more than enough to cover the weekly demand. In the second
case, weekly capacity is barely enough to cover the demand on average. In the third case, on
average, there is no way that weekly capacity can cover all the demand without outsourcing or
shortage. The scenarios are listed below. The utilization levels are calculated using mean demand
and mean processing times of the products. Table 2 shows daily and average utilization values
along with daily capacity requirements.

v" Demand Range (10, 70) - capacity requirement = 85 % (underutilized)
v' Demand Range (10, 75) - capacity requirement = 97 %(~fully utilized)
v" Demand Range (10, 80) - capacity requirement = 106 % (over utilized)

Table 2 — Daily capacity requirements and average utilization values
(10, 70) Daily capacity requirements
Periods
Products Average
1 2 3 4 5
36 90 153 | 138 | 33 90
17 | 34 21 49 17 27.6
150 | 90 87 45 81 90.6
88 96 180 | 84 | 264 | 1424
5 70 68 54 38 63 58.6

Total 361 | 378 | 495 | 354 | 458 | 409.2

Capacity 0 0 0 0 0 0
Utilization 75% | 79% | 103% | 74% | 95% 85%
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The maximum allowed probability of overutilization is called the risk level of
overutilization. Six different risk levels, between 0.1% to 50%, are evaluated for the stochastic
model. The risk levels evaluated are listed below;

v Risk level 1 =0.1% (almost no risk for overutilization)
v" Risk level 2 = 10% overutilization risk
v" Risk level 3 = 20% overutilization risk
v" Risk level 4 = 30% overutilization risk
v" Risk level 5 = 40% overutilization risk
v" Risk level 6 = 50% overutilization risk
Results

The results of the experiments performed are provided and discussed in detail in this section.
Both deterministic capacitated multi-item lot sizing and the stochastic version of the model are
run for the same data set with respect to three capacity requirements level. The results obtained
from the models are provided and compared with respect to total cost, on-hand inventory,
shortage, and over-utilization risk levels.

Table 3 — Total costs for deterministic and stochastic models for capacity requirement scenarios

Capacity requirement 85% 97% 106%
Risk Level Under-utilization ($) | Fully-utilization ($) | Over-utilization (3)
Deterministic 4811.25 6820.75 7271.75
Risk =0.001 4839 7828 9045
Risk =0.10 4821 7252 7915
Risk =0.20 4818 7123 7687
Risk = 0.30 4815 7030 7510
Risk =0.40 4815 6946 7408
Risk = 0.50 4812 6856 1273

Table 3 summarizes the results of the deterministic and stochastic models. At the 85%
requirement level, total cost stays almost flat since no shortage occurs in any scenario due to
more than enough capacity to meet the demand. When the demand increases, thus capacity
requirement increases, the total cost increases at all scenarios as expected. The model
increasingly uses shortage as a tool to meet the increasing capacity requirements. Deterministic
model produces better results at all cases since it does not consider variability in processing
times, thus capacity requirements. At 50% overutilization risk, the stochastic models produce
total cost values which are very close to the deterministic model total cost values. This means
that the model acts like the deterministic model at 50% risk of overutilization.

When the capacity available is more than the capacity required, such as it is at 85%
capacity requirement level, decreasing probability of overutilization has very little effect on the
total cost values. However, when the capacity available is very close to or less than the capacity
required, such as it is at 97% and 106% capacity requirement levels, decreasing probability of



overutilization increases the total cost values significantly. The stochastic model does not allow
the manufacturing system to pass its capacity beyond the allowed risk level. At 0.001 risk level,
for example, there is 0.1% risk that the capacity required for any period can pass the capacity
available. This minimized overutilization risk increases the cost significantly, but it also gives
the decision maker a safer production plan for the planning periods.

The cost of the shortage is way higher than the costs of production, setup and inventory
holding. Therefore, if there is a big difference in total cost between scenarios, the main driver of
that difference would be the shortage cost. The model balances the production planning by
allowing more shortages, as seen in Table 4, if the capacity required is more than capacity
available for than the capacity available. At 85% capacity requirement level, no shortages occur
for both of the deterministic and the stochastic models. At 97% and 106% capacity requirement
levels, for 0.1% risk level, stochastic model produces a production plan that requires more
shortages than the deterministic level.

Table 4 — Period-wise shortages for deterministic and stochastic models for 0.1% risk level

Capacity
utilization 85% Cap. requirement 97% Cap. requirement 106% Cap. requirement
Deterministic | Stochastic | Deterministic | Stochastic | Deterministic | Stochastic
Periods Model Model Model Model Model Model
P1 0 0 0 0 15 26
P2 0 0 14 30 0 17
P3 0 0 14 20 26 32
P4 0 0 0 0 0 3
P5 0 0 0 0 0 1
Total 0 0 28 50 41 79
B 85% Cap. Requirement W 97% Cap. Requirement 106% Cap. Requirement
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Figure 1 — Shortage levels for deterministic and stochastic models at various risk levels




Figure 1 shows the shortage levels for deterministic and stochastic models at various risk
levels. No shortage occurs at 85% capacity requirement level for all of the models. As the risk of
overutilization decreases, the shortage amounts increases at 97% and 106% capacity requirement
levels. The deterministic model and the stochastic model with 50% risk level yield the same
amount of shortage.
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Figure 2 — Total on-hand inventory amounts

Figure 2 shows the total on-hand inventory levels for the investigated risk levels of
stochastic model and the deterministic level. Deterministic inventory levels increase, as
expected, with the increasing capacity requirement. However, stochastic model yields mixed
results. At 85% capacity requirement level, total on-hand inventory amount increases as the risk
of overutilization decreases. However, no trend is detected for 97% and 106% capacity
requirement levels. The fluctuation is not an expected situation since the processing times are
probabilistic, and more importantly the goal of the model is cost minimization and inventory
holding cost is one of four cost components in the objective function.

Table 5 — Period-wise risk levels for stochastic model

Capacity 85% Capacity requirement | 97% Capacity requirement | 106% Capacity requirement
requirement | Stoch. Risk | Stoch. Risk | Stoch. Risk | Stoch. Risk | Stoch. Risk | Stoch. Risk
Periods 50% 0.1% 50% 0.1% 50% 0.1%

P1 0% 0% 50% 0.09% 50% 0.09%
P2 0% 0% 50% 0.08% 50% 0.09%
P3 45% 0.06% 50% 0.10% 47% 0.08%
P4 0% 0% 0% 0% 0.37% 0.09%
P5 0.12% 0.02% 0% 0% 50% 0.10%

Table 5 shows risk levels of each period obtained from the results of stochastic lot sizing
model. The results indicate that the model did not allow the overutilization risk level exceed the
predetermined value. Other stochastic models reported similar results.



Conclusions

Deterministic lot sizing models do not catch real world variability as the models assume that the
variables such as demand and processing times are exactly known and deterministic. Therefore
deterministic models find the optimal solutions for perfect inputs. However, this is not usually
the case in real world. Most of the variables that affect lot sizing decisions are uncertain. In this
study, an attempt is made to capture this uncertainty by defining a new parameter called
maximum allowable probability of overutilization of the capacity of the manufacturing system.
A new stochastic multi-item lot sizing mathematical model is proposed in order to capture the
variability in processing times and demand. Three capacity requirement levels are defined in
order to evaluate the behavior of the model in loose, normal, and tight capacity levels. Six
overutilization risk levels are proposed. The first maximum allowable probability of capacity
overutilization is 0.1%, which means that almost no risk is taken. Then the overutilization risk
increase incrementally to 50%.

Results show that when the capacity available is very close to or less than the capacity
required, decreasing probability of overutilization increases the total cost values significantly.
Similarly when the risk of overutilization decreases, the shortage amounts increases at 97% and
106% capacity requirement levels. The deterministic model and the stochastic model with 50%
risk level yield the close total cost and amounts of shortage. Stochastic models allow the
production planners to determine their own risk level of overutilization. Industry experts would
know the variability in their production systems and in demand better.
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