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Abstract 
Stochastic capacitated lot sizing problem is considered in the presence of probabilistic processing 

times and demand in this paper. A two-step hierarchical methodology is developed. First, 

stochastic capacity requirements are determined with statistical analysis & Monte-Carlo 

simulation. Second, a stochastic nonlinear mixed integer mathematical model is developed to 

solve the problem. 
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Introduction 

 

The goal of the lot sizing models is to determine the optimal timing and level of production (Süer 

et al. 2011).  Production planning problems are often classified according to the hierarchical 

framework of strategic, tactical and operational decision making activities (Bitran and Tirupati 

1993). Depending on the decision horizon and level of aggregation, lot sizing models are usually 

classified as; (1) tactical models (yearly master production schedule), (2) operational models 

(sequencing and loading), and (3) models between operational and tactical models (monthly lot 

sizing). 

 

The simplest problem in lot sizing is the single item uncapacitated lot sizing problem. In 

this model only one item is considered for lot sizing for manufacturing with limitless capacity. 

However, this does not reflect the exact situation in almost all manufacturing facilities. 

Companies have limited capacities and mostly they produce more than one product. Any realistic 

model has to take this into account.  

 

Capacitated Multi-Item Lot Sizing Problem considers production of multi items with 

limited production capacity (Süer et al. 2008). In Capacitated Multi-Item Lot Sizing Problem, 

generally, the objective is to minimize the total cost of production, set up and inventory. Demand 

is met from the production in the current period or the inventory left over from the previous 



 
 

period. Any excess is carried over as inventory to the next period. In each period, set up is 

required if anything will be produced. 

 

Background and research motivation 

 

Capacitated lot sizing is one of the widely studied problems in production planning and control 

literature. Researchers work on the models that solve one part of the lot sizing area. Many of the 

studies in the literature focus on the impact set up times (Armentano et al. 1999, Diaby et al. 

1992, Gopalakrishnan et al. 2001, Manne 1958, Newson 1975, Trigeiro et al. 1989). 

Additionally, some works focus on the inventory management aspects of lot sizing (Erenguc and 

Aksoy 1990, Gutiérrez et al. 2003, Jaruphongsa et al. 2004, Sandbothe and Thompson 1993). 

Furthermore, demand aspect of the lot sizing is another area that has been widely studied. (Aksen 

et al. 2003, Federgruen and Tzur 1993, Jans and Degraeve 2004, Hsu and Lowe 2001, Hsu et al. 

2005). In fact, the literature is abundant with works that address various aspects of the lot sizing 

area including the production and time horizon.  

 

To reflect the inherent uncertainty exists in many production environments, stochastic lot 

sizing problem has been studied by many researchers and it is getting more attention recently. To 

name a few, Tarim and Kingsman (2004) proposed a mixed integer model with the objective of 

minimizing total cost of production, inventory holding and ordering costs for stochastic multi-

period single item inventory lot sizing problem under the “static-uncertainty” strategy of 

Bookbinder and Tan (1988) where lot sizes and production periods are fixed in advance. Koca et 

al. (2015) studied lot sizing problem where demand is uncertain and processing times can be 

reduced by adjusting machine speed, number of operators assigned to jobs, outsourcing and 

some other factors. Tempelmeier and Hilger (2015) developed linear programming models and 

proposed a modified Fix-and-Optimize heuristic to solve the stochastic dynamic lot sizing 

problem according to “static-uncertainty” strategy of Bookbinder and Tan (1988). A review of 

studies in this area is presented by Glock et al. (2014). In this study, a stochastic capacitated lot 

sizing problem is considered in the presence of probabilistic processing times and demand. The 

goals of this study are;  

 

 To visualize the impact of stochasticity on the optimal lot size values by comparing the 

results with those of deterministic model (total cost, shortages, on hand inventory) 

 To enable production planners capture the variability in manufacturing system as a result 

of uncertainty in demand and processing times 

 To enable decision makers decide their own risk level of overutilization which can be 

determined prior to planning 

 

Methodology 

 

Mathematical modeling and statistical analysis is used in a two-step hierarchical methodology in 

order to handle the uncertainty in processing times and demand. First, stochastic capacity 

requirements are determined with statistical analysis and Monte-Carlo simulation. In the second 

phase, a proposed stochastic nonlinear mathematical model is developed to solve lot sizing 

problem subject to a risk level. In this regard, risk level is introduced as a decision making 

parameter for production planner, integrated into the model as the maximum threshold for 



 
 

overutilization probability. Various risk levels and problem sizes are experimented. The 

proposed approach is compared with the deterministic model’s results to visualize the impact of 

stochasticity on the optimal lot size values. 

 

Deterministic capacity requirements are calculated by simply multiplying the demand and 

the processing time. Stochastic capacity requirements, however, require statistical analysis to 

find probability distribution functions of the capacity requirements since demand and processing 

times are probabilistic, which are assumed to follow normal distribution. Arena Input Analyzer 

software is used to statistically analyze and find the fitted distributions of the product of these 

two probabilistic variables. (See Egilmez et al., 2012 for detailed information about the statistical 

analysis).  

 

Deterministic and stochastic capacitated multi-item lot sizing models 

 

In a deterministic case, annual demand, processing times and therefore capacity requirements are 

known exactly. The notation, i.e., the parameters, the decision variables and indices provided 

below are used for both deterministic and stochastic capacitated multi-item lot sizing models. 

 

Indices: 

i: product index 

j: period index 

 

Parameters: 

M:  Big number 

N: Number of products 

T: Number of periods 

A: Set up cost 

p: Shortage cost 

k: inventory carrying cost 

b: production cost 

Cj: System capacity on period j 

R: Risk level 

PrOUj: Probability of overutilization on period j 

mPTi: Expected processing time of product i 

σPTi: Standard deviation of processing time for product i 

 

Decision Variables: 

Yij: 1 if an order placed for product i on period j, 0 otherwise 

Xij: Optimal lot size for product i on period j 

Sij: Inventory level for product i on period j 

STij: Amount of shortage for product i on period j 

 

Objective function: 

 

min Z = A ∗ Yij + b ∗ Xij + k ∗ Sij + p ∗ STij                                                                                          (1) 



 
 

 

Subject to: 

 

Si(j−1) + Xij + STij = Dij + Sij                                   ∀i ∈ N  ∀j ∈ T                                                      (2) 

 

Xij ≤ M ∗ Yij                                                                   ∀i ∈ N  ∀j ∈ T                                                     (3) 

 

∑(𝑋𝑖𝑗 ∗ 𝑃𝑇𝑖)

𝑃

𝑖=1

  ≤  𝐶𝑗                                                                                                                                    (4) 

 

Xij, Sij ≥ 0, Yij ∈ {0,1}                                               ∀i ∈ N  ∀j ∈ T                                                        (5) 

 

The objective of the model is to minimize the total of setup, production, inventory holding 

and shortage costs (Equation (1)).  Equation (2) ensures that the demand is satisfied for each 

period and each product. Demand can be met from production in the current period and/or 

inventory left over from the previous period, where shortage is allowed.  If the amount of 

products is more than the amount of demand in the current period, it is carried over as excess 

inventory to the next period. Equation (3) guarantees to have setup if any production is required 

for that period. Equation (4) limits the production up to the capacity. Equation (5) determines 

whether an order is placed for a product or not. It also guarantees that the production and 

inventory levels cannot be negative.  

 

Deterministic capacity constraint, Equation (4), in CLSP model is converted to stochastic 

constraint since demand and processing times are probabilistic in the stochastic model. The 

objective function of the deterministic problem remains the same along with the equations (2), 

(3), and (5). Equations (6) and (7) are the stochastic constraints that prevent the probability of 

overutilization of the manufacturing facility to exceed the predetermined risk level. Various risk 

levels are investigated. 

 

PrOUj =  p

(

 Zj ≤
( ∑ (Xij ∗ mPTi)

P
i=1 − Cj)

√∑ Xij
2 ∗P

i=1 σPTi
2

)

                       ∀i ∈ N  ∀j ∈ T                                     (6) 

 

PrOUj ≤ R                                                 ∀j ∈ T                                                                                         (7) 

 

Experimentation and results  

 

In this section, data generation, experiments and the results of the experiments are explained.  

Data generation is explained in the first phase. Then parameters of the experiments are described. 

Finally, the results of the experiments are presented and analyzed in detail.  

 

The mean of weekly demand data is generated from uniform distribution for various 

demand ranges of (10, 70), (10, 75) and (10, 80) for each product. The standard deviation of 

demand is assumed to be 25% of the mean.  



 
 

Similarly, means of the processing times are generated via uniform distribution (1, 5). The 

standard deviation of processing times is assumed to randomly vary between 10% and 50% of 

the mean processing times for each product due to various difficulty levels of the products. Table 

1 shows the randomly generated demand data and mean processing times between (10, 70) for 

five products and five days.  

 
Table 1 – Sample demand and processing time data for demand data range (10, 70) 

Demand data 

(10,70) 
Periods 

mPT 

(min) Products 1 2 3 4 5 

1 12 30 51 46 11 3 

2 17 34 21 49 17 1 

3 50 30 29 15 27 3 

4 22 24 45 21 66 4 

5 70 68 54 38 63 1 

 

The manufacturing facility is assumed to work 8 hours/day, e.g., 480 minutes/day. Small 

data set is used due to computational limitations in Lingo software. The experimentation is 

performed for 5 periods and 5 products. Three different levels of average utilizations of all 

periods are considered for both deterministic model and stochastic models in order to capture the 

behavior of the system in various capacity scenarios. In the first case, we made sure that the 

weekly capacity is, on average, more than enough to cover the weekly demand. In the second 

case, weekly capacity is barely enough to cover the demand on average. In the third case, on 

average, there is no way that weekly capacity can cover all the demand without outsourcing or 

shortage. The scenarios are listed below. The utilization levels are calculated using mean demand 

and mean processing times of the products. Table 2 shows daily and average utilization values 

along with daily capacity requirements. 

  

 Demand Range (10, 70)  capacity requirement = 85 % (underutilized) 

 Demand Range (10, 75)  capacity requirement = 97 %(~fully utilized) 

 Demand Range (10, 80)  capacity requirement = 106 % (over utilized) 

 
Table 2 – Daily capacity requirements and average utilization values 

(10, 70) Daily capacity requirements 

Products 
Periods 

Average 
1 2 3 4 5 

1 36 90 153 138 33 90 

2 17 34 21 49 17 27.6 

3 150 90 87 45 81 90.6 

4 88 96 180 84 264 142.4 

5 70 68 54 38 63 58.6 

Total 361 378 495 354 458 409.2 

Capacity 

Utilization 
75% 79% 103% 74% 95% 85% 



 
 

 

The maximum allowed probability of overutilization is called the risk level of 

overutilization. Six different risk levels, between 0.1% to 50%, are evaluated for the stochastic 

model. The risk levels evaluated are listed below; 

 

 Risk level 1 = 0.1% (almost no risk for overutilization) 

 Risk level 2 = 10% overutilization risk 

 Risk level 3 = 20% overutilization risk 

 Risk level 4 = 30% overutilization risk 

 Risk level 5 = 40% overutilization risk 

 Risk level 6 = 50% overutilization risk 

 

Results 

 

The results of the experiments performed are provided and discussed in detail in this section. 

Both deterministic capacitated multi-item lot sizing and the stochastic version of the model are 

run for the same data set with respect to three capacity requirements level. The results obtained 

from the models are provided and compared with respect to total cost, on-hand inventory, 

shortage, and over-utilization risk levels.  

 
Table 3 – Total costs for deterministic and stochastic models for capacity requirement scenarios 

Capacity requirement 85%  97%  106%  

Risk Level Under-utilization ($) Fully-utilization ($) Over-utilization ($) 

Deterministic 4811.25 6820.75 7271.75 

Risk = 0.001 4839 7828 9045 

Risk = 0.10 4821 7252 7915 

Risk = 0.20 4818 7123 7687 

Risk = 0.30 4815 7030 7510 

Risk = 0.40 4815 6946 7408 

Risk = 0.50 4812 6856 7273 

 

Table 3 summarizes the results of the deterministic and stochastic models. At the 85% 

requirement level, total cost stays almost flat since no shortage occurs in any scenario due to 

more than enough capacity to meet the demand. When the demand increases, thus capacity 

requirement increases, the total cost increases at all scenarios as expected. The model 

increasingly uses shortage as a tool to meet the increasing capacity requirements. Deterministic 

model produces better results at all cases since it does not consider variability in processing 

times, thus capacity requirements. At 50% overutilization risk, the stochastic models produce 

total cost values which are very close to the deterministic model total cost values. This means 

that the model acts like the deterministic model at 50% risk of overutilization.  

 

When the capacity available is more than the capacity required, such as it is at 85% 

capacity requirement level, decreasing probability of overutilization has very little effect on the 

total cost values. However, when the capacity available is very close to or less than the capacity 

required, such as it is at 97% and 106% capacity requirement levels, decreasing probability of 



 
 

overutilization increases the total cost values significantly. The stochastic model does not allow 

the manufacturing system to pass its capacity beyond the allowed risk level. At 0.001 risk level, 

for example, there is 0.1% risk that the capacity required for any period can pass the capacity 

available. This minimized overutilization risk increases the cost significantly, but it also gives 

the decision maker a safer production plan for the planning periods.  

 

The cost of the shortage is way higher than the costs of production, setup and inventory 

holding. Therefore, if there is a big difference in total cost between scenarios, the main driver of 

that difference would be the shortage cost. The model balances the production planning by 

allowing more shortages, as seen in Table 4, if the capacity required is more than capacity 

available for than the capacity available. At 85% capacity requirement level, no shortages occur 

for both of the deterministic and the stochastic models. At 97% and 106% capacity requirement 

levels, for 0.1% risk level, stochastic model produces a production plan that requires more 

shortages than the deterministic level.  

 
Table 4 – Period-wise shortages for deterministic and stochastic models for 0.1% risk level 

Capacity 

utilization 85% Cap. requirement 97% Cap. requirement 106% Cap. requirement 

Periods 

Deterministic 

Model 

Stochastic 

Model 

Deterministic 

Model 

Stochastic 

Model 

Deterministic 

Model 

Stochastic 

Model 

P1 0 0 0 0 15 26 

P2 0 0 14 30 0 17 

P3 0 0 14 20 26 32 

P4 0 0 0 0 0 3 

P5 0 0 0 0 0 1 

Total 0 0 28 50 41 79 

 

 
Figure 1 – Shortage levels for deterministic and stochastic models at various risk levels 
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Figure 1 shows the shortage levels for deterministic and stochastic models at various risk 

levels. No shortage occurs at 85% capacity requirement level for all of the models. As the risk of 

overutilization decreases, the shortage amounts increases at 97% and 106% capacity requirement 

levels. The deterministic model and the stochastic model with 50% risk level yield the same 

amount of shortage.  

 

 
Figure 2 – Total on-hand inventory amounts 

 

Figure 2 shows the total on-hand inventory levels for the investigated risk levels of 

stochastic model and the deterministic level. Deterministic inventory levels increase, as 

expected, with the increasing capacity requirement. However, stochastic model yields mixed 

results. At 85% capacity requirement level, total on-hand inventory amount increases as the risk 

of overutilization decreases. However, no trend is detected for 97% and 106% capacity 

requirement levels. The fluctuation is not an expected situation since the processing times are 

probabilistic, and more importantly the goal of the model is cost minimization and inventory 

holding cost is one of four cost components in the objective function.  

 
Table 5 – Period-wise risk levels for stochastic model 

Capacity 

requirement 

85% Capacity requirement 97% Capacity requirement 106% Capacity requirement 

Stoch. Risk Stoch. Risk Stoch. Risk Stoch. Risk Stoch. Risk Stoch. Risk  

Periods 50% 0.1% 50% 0.1% 50% 0.1% 

P1 0% 0% 50% 0.09% 50% 0.09% 

P2 0% 0% 50% 0.08% 50% 0.09% 

P3 45% 0.06% 50% 0.10% 47% 0.08% 

P4 0% 0% 0% 0% 0.37% 0.09% 

P5 0.12% 0.02% 0% 0% 50% 0.10% 

 

Table 5 shows risk levels of each period obtained from the results of stochastic lot sizing 

model. The results indicate that the model did not allow the overutilization risk level exceed the 

predetermined value. Other stochastic models reported similar results.  
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Conclusions 

 

Deterministic lot sizing models do not catch real world variability as the models assume that the 

variables such as demand and processing times are exactly known and deterministic. Therefore 

deterministic models find the optimal solutions for perfect inputs. However, this is not usually 

the case in real world. Most of the variables that affect lot sizing decisions are uncertain. In this 

study, an attempt is made to capture this uncertainty by defining a new parameter called 

maximum allowable probability of overutilization of the capacity of the manufacturing system. 

A new stochastic multi-item lot sizing mathematical model is proposed in order to capture the 

variability in processing times and demand. Three capacity requirement levels are defined in 

order to evaluate the behavior of the model in loose, normal, and tight capacity levels. Six 

overutilization risk levels are proposed. The first maximum allowable probability of capacity 

overutilization is 0.1%, which means that almost no risk is taken. Then the overutilization risk 

increase incrementally to 50%.  

 

Results show that when the capacity available is very close to or less than the capacity 

required, decreasing probability of overutilization increases the total cost values significantly. 

Similarly when the risk of overutilization decreases, the shortage amounts increases at 97% and 

106% capacity requirement levels. The deterministic model and the stochastic model with 50% 

risk level yield the close total cost and amounts of shortage. Stochastic models allow the 

production planners to determine their own risk level of overutilization. Industry experts would 

know the variability in their production systems and in demand better.  
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