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Abstract 
A firm tends to associate capacity planning with economic scale size and demand 

fulfillment for profit maximization. However, it is troublesome capacity dilemmas to 

achieve both of them simultaneously in stochastic environment. We propose a 

multi-objective stochastic programming with data envelopment analysis (DEA) 

constraints to find a compromise efficient benchmark.  
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Introduction 

 

Capacity planning plays an important role in a firm’s strategy development and core 

competence enhancement. To determine potential cost advantages, microeconomics 

tends to use economies of scale that reduce the cost per output, since the fixed costs 

are spread out over more units of output when increasing scale size. Banker (1984) 

defined MPSS as the production scale size at which the average productivity of a 

production unit is maximized. Demand fluctuations produce a mismatch between 

capacity level and realized demand. Clearly, demand fulfillment leads to revenue 

maximization since selling more products both creates profits and conserves resources. 

In particular, demand forecasting and scale size decisions provide some guidelines to 

employment planning and inventory management. These two issues motivate this 

study. 

Thus, a firm on one hand would like to identify the economic scale size for cost 
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minimization per unit of product but on the other would like to satisfy the demand 

level for maximizing revenue. However, in practice, a firm may not achieve these two 

objectives simultaneously and faces a capacity dilemma. Figure 1 illustrates Firm A’s 

capacity dilemma on a single-input and single-output production function. The 

S-shaped curve describes the production function and the dashed line is the constant 

returns-to-scale frontier that identifies the MPSS benchmark on the production 

function (Banker, 1984). �� indicates Firm A’s demand forecast and truncates the 

production function by the point �� (i.e. demand fulfillment). Located below the 

production function, Firm A represents inefficiency. Facing a capacity dilemma 

between MPSS and demand fulfillment, Firm A needs to formulate the multi-objective 

decision analysis (MODA) problem. Based on the forecasts and estimates of scale 

size, cost structure, and expected revenue a firm need to move towards the target 

which shows a tradeoff between MPSS benchmark and demand fulfillment ��. 

This study makes three contributions to the literature. First, we push a typical 

“ex-post” data envelopment analysis (DEA) study of production function estimation 

towards an “ex-ante” DEA analysis for capacity planning. In fact, DEA is not only a 

method for estimating productive efficiency but also an approach finding direction for 

productivity improvement. We focus on how to set a target on the production function 

and move towards it can guide capacity planning. Second, we address the capacity 

dilemma between the MPSS and demand fulfillment by using MODA to develop a 

compromise solution. The trade-off between an MPSS (cost-oriented) strategy and a 

demand-chasing (revenue-oriented) strategy shows the risk preference of the 

decision-maker. Third, the solution comparison of MMR model and SP technique 

when addressing decision under strict uncertainty supplies useful managerial insights. 

 

 
Figure 1– Capacity dilemma 
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Most Productive Scale Size 

 

An empirical production function characterizing production possibility set (PPS) can 

be estimated by data envelopment analysis (DEA) (Banker et al., 1984). Let x ∈ ℝ��  

denote the input vector and y ∈ ℝ�
  denote the output vector of the production 

system. Define the production possibility set as T = {�x, y�: x	can	produce	y} and 

estimate it by a piece-wise linear concave function enveloping all observations shown 

in (1), i.e. DEA formulation. Let i = {1,2, … , I}  be the indexed set of inputs, j = {1,2, … , J} be the indexed set of output, and k = {1,2, … , K} be the indexed set 

of firms. Index r is an alias of index k for a specific firm. X'( is the i)* input 

resource, Y,(  is the amount of the j)*  production output, and λ(  is the 

convex-combination multiplier of the k)*  firm. The model (1) defines the 

empirically estimated variable-returns-to-scale (VRS) production possibility set T./01.  

 T./01 = {�x, y�| ∑ λ(Y,(4(56 ≥ y,, ∀j; ∑ λ(X'(4(56 ≤ x', ∀i; ∑ λ(4(56 = 1; λ( ≥ 0, ∀k   (1) 

 

Measure the efficiency θ/01 using the DEA estimator. For a specific firm r, we can 

measure the VRS input-oriented technical efficiency (ITE) θ=/01 by D�/01�x=, y=� =sup	{θ=/01|�θ=/01x=, y=� ∈ T./01}, where θ=/01 ≤ 1, and a firm is technically efficient if θ=/01 = 1. 

Banker (1984) shows that MPSS is equivalent to the efficient benchmark on a 

constant-returns-to-scale (CRS) frontier. The idea of returns-to-scale is directly related 

to the estimation of MPSS since returns-to-scale illustrates the change of marginal 

product (MP). Banker (1984) claimed that this efficiency measure with respect to 

CRS frontier not only captures the technically inefficiency of a firm, but also any 

inefficiency due to the difference of its actual scale size from MPSS. Model (2) 

defines the empirically estimated CRS production possibility set T.@01.  

 T.@01 = {�x, y�| ∑ λ(Y,(4(56 ≥ y,, ∀j; ∑ λ(X'(4(56 ≤ x', ∀i; λ( ≥ 0, ∀k}      (2) 

 

Measure the efficiency θ@01 using the DEA estimator. For a specific firm r, we can 

measure the CRS input-oriented overall efficiency (IOE) θ=@01 by D�@01�x=, y=� =sup	{θ=@01|�θ=@01x=, y=� ∈ T.@01}, where θ=@01 ≤ 1, and a firm is overall efficient if θ=@01 = 1. 

To identify the MPSS, based on VRS efficiency measure, project all of the 

inefficient firms to their efficient benchmarks on the VRS frontier via efficiency 

measure θ/01. That is, denote the efficient benchmarks by �θ=/01∗x=, y=�, where θ=/01∗ is the optimal solution generated from D�/01�x=, y=�. Next, let these efficient 
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benchmarks be new observations and estimate their CRS efficiency measure θ@01. 
Thus, we can use optimal solution λ(∗  of D�@01�θ=/01∗x=, y=� to identify the MPSS if ∑ λ(∗4(56 = 1. 

Figure 2 for a two-input and one-output case. For illustrative purposes, the VRS 

DEA frontier in Figure 2 does not need to be generated from origin due to DEA’s free 

disposability property (also called strong disposability) of outputs. 

 

 
Figure 2 – MPSS on VRS frontier 

 

 

Compromise Target between MPSS and Demand 

 

This section presents a compromise solution according to MPSS and demand forecast. 

For simplicity, we limit discussion to the production function with multiple inputs and 

single output and apply the proposed solution to three separate cases (Case1: Demand 

level less than or equal to MPSSmax; Case2: Demand level larger than MPSSmax and 

smaller than Ymax; Case3: Demand level larger than Ymax). The notations and 

definitions are described. 

Let (BCDEFGHH, IDEFGHH ) be MPSS observation JK  on frontier, where JK ={1,2, … , LK}. Denote MPSSmax as peak output of MPSS hull and define MPSSPQR =max{T|T ∈ MPSS	Hull} and MPSSmax	= WBCF, IFX. Model (3) calculates MPSSmax. 

�BCF, IF� 	= argMax

Z[\
[]T^̂

∑ _DEBCDEFGHH`EDE56 = aC, ∀b∑ _DEIDEFGHH`EDE56 ≥ T;∑ _DE`EDE56 = 1;_DE ≥ 0, ∀JK; 	aC ≥ 0, ∀b; 	T ≥ 0c[d
[e

           (3) 
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Note that there are potential multiple MPSSmax benchmarks; however, they do not 

affect our illustration. If the price of input is available, let fC be the cost of the input 

resource b, and use model (3) to obtain an unique MPSSmax when replacing the 

objective function of model (3) by Max gT − ∑ fCaCC , where g is a large positive 

number. 

 Denote Ymax as the peak output of the production function. Note that the peak 

output is limited since PPS is estimated by DEA. Let Ymax	= �BCG , IG�. Then calculate 

the Ymax using model (4). 

 

WBCG , IGX = argMax

Z[\
[]T^̂

∑ _DBCDD̀56 = aC , ∀b;∑ _DIDD̀56 ≥ T;∑ _DD̀56 = 1;_D ≥ 0, ∀J;	aC ≥ 0, ∀b; 	T ≥ 0c[d
[e

         (4) 

 

Similarly, obtain a unique solution by replacing objective function with Max gT − ∑ fCaCC . The unique solution of Ymax is an anchor point in DEA. 

 Based on MPSSmax and Ymax, separate the demand scenario into three categories 

for setting compromise targets between MPSS and demand fulfillment, respectively. 

Figure 3, which shows a one-input and one-output case, illustrates demand scenario 

regarding the three cases. 

 

 
Figure 3 – Demand scenario with respect to three cases 
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Aggregated Target under Demand Uncertainty 

 

This section proposes three models to address the compromise target in an 

environment characterized by highly volatile demand. In practice, however, 

continuous distribution of demand is difficult to build, and therefore we present an 

alternative approach, i.e. decision under strict uncertainty (i.e. no information about 

distribution): minimax regret approach (MMR) and the principle of indifference with 

respect to discrete demand scenario. For the three proposed models described below, Targetj = �BCjk , Ijk� is the compromise target obtained from Section 3 given one 

specific demand scenario l , and ATarget = �BC�k , I�k�  is the aggregated 

compromise target under demand uncertainty. The widely used minimax regret 

approach (MMR) (Savage, 1951) addresses decision under strict uncertainty by 

quantifying the “regret” when a stochastic event occurs after decision-making. This 

approach is conservative, e.g., a decision-maker wants to avoid the worst case yet 

ensure a guaranteed minimum possible payoff. The regret refers to the “distance” 

from the aggregated target to each target under different demand scenarios. The MMR 

approach to minimize the maximal distance from aggregated target �BC�k , I�k� to 

each individual target �BCjk , Ijk� generated by each corresponding demand scenario, 

i.e., our MMR model minimizes the maximum regret in terms of all scenarios. 

To identify �BC�k , I�k�  on the VRS frontier, we apply a sign-constrained 

convex nonparametric least squares (CNLS) approach to estimate the VRS frontier 

(Lee et al., 2013). In this study, a typical DEA formulation does not successfully 

support finding the benchmark on the frontier because DEA requires a predetermined 

orientation and our MMR model minimizes the distance (n) in the objective function 

rather than an efficiency term (opqrH) in DEA. Therefore, we employ an alternative 

DEA model, sign-constrained CNLS. Let sD and tCD be the decision variables of 

intercept and slope of bth input of firm J with respect to the linear regression, 

respectively. uD is the decision variable representing the inefficiency term. Index  ℎ 

is an alias of index k representing firm. Formulate the sign-constrained CNLS as 

model (5) and sD∗  and tCD∗  are optimal solutions. In model (5), the first constraint 

represents linear hyperplane, the second constraint impose concavity and the 

monotonicity on the underlying unknown production function is imposed by the third 

constraint, and the sign constraint uD ≤ 0 denotes the inefficiency term. �sD∗ , tCD∗ � = argMin 

Z[\
[]∑ uDwD ^̂

ID = sD + ∑ tCDC BCD + uD, ∀J;sD + ∑ tCDC BCD ≤ sy + ∑ tCyC BCD, ∀J, ∀ℎ	and	J ≠ ℎ;tCD ≥ 0, ∀b, ∀J;uD ≤ 0, ∀J; c[d
[e

       (5) 
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Next, minimize the maximum distance (our MMR strategy) to each target �BCjk , Ijk� and find the aggregated target �BC�k , I�k� by following model (6). If the 

input price and output price are available, formulate the first constraint {|Ijk − T| +∑ fC|BCjk − aC|C ≤ n, ∀l, and then measure the distance in dollars. Let }D be the 

binary variable of firm J for choosing one linear hyperplane in CNLS. The model (6) 

with objective function gn − ({T − ∑ fCaCC )  can be formulated to obtain the 

unique aggregated target.  

 WBC�k , I�kX = argMin 

Z[
[[[
[\
[[[
[[]

gn − ({T − ∑ fCaCC )
^
^
^
^{(Tj� + Tj~) + ∑ fC(aCj� + aCj~)C ≤ n, ∀l;aC = BCjk − aCj� + aCj~ , ∀b, ∀l;T = Ijk − Tj� + Tj~, ∀l;T ≤ sD∗ + ∑ tCD∗C aC +g(1 − }D), ∀J;T ≥ sD∗ + ∑ tCD∗C aC −g(1 − }D), ∀J;∑ }DD = 1;∑ _DBCDD̀56 ≤ aC, ∀b;∑ _DIDD̀56 ≥ T;∑ _DD̀56 = 1;}D ∈ 
0,1�, ∀J;	_D ≥ 0, ∀J;aC , T, aCj� , aCj~ , Tj�, Tj~ ≥ 0, ∀b, ∀l c[

[[[
[d
[[[
[[e

       (6) 

 

The second proposed model, the “EV model”, assumes that all demands are 

equally likely to occur only when there is no knowledge indicating unequal 

probabilities, and calculates the expected value of demand scenarios with equal 

probability. Let �pj be the demand of scenario l of �th firm. Define the expected 

value of demand defined as ��p = 6H∑ �pjHj56 , ∀� . Using the case identification 

described in the previous section, apply the EV model to generate the compromise 

target with respect to this expected-value scenario. 

The third proposed model, the “SP model”, applies stochastic programming (SP) 

with two-stage recourse problem to set the aggregated target (BC�k , I�k) . The 

first-stage decision, i.e. the here-and-now, corresponds to selecting the aggregated 

target based on the demand forecasts. After demand is realized, the second-stage 

decision, i.e. the wait-and-see, corresponds to the minimization of the expected 

recourse function (i.e. expected regret) with respect to all scenarios with equal 

probability. Replace the decision variable n by nj associated with each scenario l 
and change the objective function as g(6H∑ njj ) − ({T − ∑ fCaCC ) in model (6). 
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Computational Study 

 

This section describes the experimental setup and the performance of the three 

solution approaches addressing uncertainty. Firm-level data motivates this study. We 

introduce sufficient variation in the data sets to evaluate the solution approaches under 

different conditions and to study the impact of the problem parameters on capacity 

decisions. The sets of values for the various parameters in the model are as follows. 

‘ 

Production function. We use the data generating process (DGP) for the two 

inputs and single output production function, and generate 50 efficient 

observations on the frontier given by ID = (B6D)�.�(BwD)�.�, where B6D and BwD independently follow uniform distribution ��b����(1,10). 
Price of input and outputs. We assume price availability inputs and outputs for 

allocatively efficient benchmark and uniqueness. Let { = 15 , f6 = 6 , and fw = 4. 

Inefficient firm �. We assume one inefficient firm � for finding the compromise 

target and randomly generate it as (B6p,	B6p,Ip )	= (4.836, 6.315, 3.638). 
 

We randomly generate 50 VRS efficient observations via DGP and find that 7 

observations are MPSS. In particular, the peak output of MPSS hull is MPSSmax=(B6F, BwF , IF) = (2.002, 6.107, 2.722). The peak output of production function is 

Ymax= (B6G , BwG , IG) = (8.979, 8.868, 5.760) . For simplicity, we discuss three 

demand forecasts generated from ������(Ip , 1)  to represent the Case1 with 

demand level 2.479, Case2 with demand 4.075, and Case3 with demand 6.027. 

 For the first demand scenario with lower demand level (i.e. Case1), we identify 

MPSS-DF as MPSS-DF= (2.007, 4.839, 2.479). Thus, the inefficient firm can drive 

productivity towards MPSS-DF without a tradeoff between MPSS and demand.  

 For the second demand scenario with larger demand level than MPSSmax and less 

than Ymax (i.e. Case2), we identify the 

DF-cMPSSmax= (B6� , Bw� , I�) = (4.640, 7.226, 4.075) . Given different tradeoff 

parameter � with bin size equal to 0.1, we formulate a convex combination between 

MPSSmax and DF-cMPSSmax, and calculate ConMD as in Table 1. The target 

approximate to profit maximization is (3.433, 6.834, 3.521) with profit 4.882. 

 For the third demand scenario, with larger demand level than Ymax (i.e. Case3), 

we formulate a convex combination between MPSSmax and Ymax, and calculate 

ConMY as in Table 2. The target approximate to profit maximization benchmark is 

MPSSmax = (3.433, 6.834, 3.521) with profit 4.393. The result shows that it is not 

worthy to catch the higher demand level when too far from MPSS by considering the 



This manuscript is used for conference presentation only, rather than official publication. 
 

DMR effect of the production function. 

 

Table 1 – Tradeoff between MPSSmax and DF-cMPSSmax � ConMD= WBCF� , IF�X o�∗ Target = (B6, Bw, I) Profit 

0 
DF-cMPSSmax 

(4.640, 7.226, 4.075) 
1 (4.640, 7.226, 4.075) 4.38 

0.1 (4.376, 7.114, 3.940) 1.034 (4.360, 7.141, 3.950) 4.522 
0.2 (4.112, 7.002, 3.804) 1.063 (4.067, 7.045, 3.815) 4.639 
0.3 (3.848, 6.890, 3.669) 1.092 (3.757, 6.943, 3.672) 4.762 
0.4 (3.585, 6.778, 3.534) 1.121 (3.433, 6.834, 3.521) 4.882 
0.5 (3.321, 6.667, 3.398) 1.115 (3.146, 6.707, 3.371) 4.859 
0.6 (3.057, 6.554, 3.263) 1.097 (2.884, 6.578, 3.227) 4.786 
0.7 (2.793, 6.442, 3.128) 1.080 (2.631, 6.453, 3.087) 4.715 
0.8 (2.529, 6.330, 2.993) 1.062 (2.386, 6.331, 2.952) 4.646 
0.9 (2.266, 6.219, 2.857) 1.030 (2.188, 6.216, 2.834) 4.516 

1.0 
MPSSmax 

(2.002, 6.107, 2.722) 
1 (2.002, 6.107, 2.722) 4.393 

 

Table 2 – Tradeoff between MPSSmax and Ymax � ConMY= WBCF� , IF�X o�∗ Target = (B6, Bw, I) Profit 

0 
Ymax 

(8.979, 8.868, 5.760) 
1 (8.979, 8.868, 5.760) -2.946 

0.1 (8.281, 8.592, 5.456) 1.142 (8.770, 8.916, 5.714) -2.568 
0.2 (7.583, 8.316, 5.152 1.331 (8.493, 8.979, 5.654) -2.064 
0.3 (6.886, 8.040, 4.849) 1.595 (8.106, 9.067, 5.569) -1.361 
0.4 (6.188, 7.764, 4.545) 1.968 (7.497, 9.166, 5.423) -0.303 
0.5 (5.490, 7.487, 4.241) 2.328 (6.360, 9.045, 5.042) 1.296 
0.6 (4.793, 7.211, 3.937) 2.259 (4.738, 8.340, 4.314) 2.924 
0.7 (4.095, 6.935, 3.633) 1.973 (3.374, 7.539, 3.629) 4.039 
0.8 (3.397, 6.659, 3.330) 1.531 (2.633, 6.842, 3.166) 4.324 
0.9 (2.700, 6.383, 3.026) 1.214 (2.243, 6.397, 2.895) 4.378 

1.0 MPSSmax 
(2.002, 6.107, 2.722) 

1 (2.002, 6.107, 2.722) 4.393 

 

Again, we use the three scenarios (i.e. demand forecasts) above and use the three 

proposed models to calculate the aggregated target under demand uncertainty. In the 

MMR model, we define regret as the distance measure from the aggregated target to 

each individual target found by each demand scenario separately. MMR shows the 

aggregated target is WB6�k , Bw�k , I�kX = (3.210, 5.021, 3.021) using model (11). In 

the EV model, based on the principle of indifference, the expected demand ��p = 

4.193 corresponds to Case2. Thus, we calculate the DF-cMPSSmax	= (B6� , Bw� , I�) =(4.826, 7.476, 4.193), and then the aggregated target is (3.216, 6.858, 3.433). In the 

SP model, the two-stage recourse problem generates the aggregated target (2.002, 

6.107, 2.722) as MPSSmax.  
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To summarize, the MMR model assessing the regret and minimizing the 

maximal regret leads to the worst case analysis, where the target is generated by an 

outlier demand scenario. Thus, the MMR model is sensitive to the outlier and 

provides a conservative target. In the EV model, the principle of indifference supports 

the equal probability of each scenario and the EV model calculates the expected value 

of demand scenarios as only one dummy scenario. While the method is 

straightforward, it may smooth out the outlier and eliminate the worst-case effect. The 

SP model with two-stage resource problem considers all demand scenarios including 

the outlier effect. Because it minimizes the expected recourse function, the SP model 

provides the most robust solution like MPSSmax to address demand fluctuation. As 

mentioned, in the long run, MPSSmax provides a cost-minimization benchmark 

addressing uncertainty due to an economic scale size. The result of SP model gives 

insights to justify that capacity installation should refer to economic scale size to 

address future uncertainty. 

 

Conclusion 

This study described a capacity dilemma- MPSS versus demand fulfillment. A 

multi-objective decision analysis (MODA) is required in the case of a firm that on one 

hand would like to identify the economic scale size for cost minimization per unit of 

product but on the other would like to satisfy the demand level for minimizing 

inventory loss (i.e. capacity surplus) or maximizing profit by reducing loss of sales 

(i.e. capacity shortage). Models were proposed to identify the MPSS benchmark and 

the benchmark close to demand forecast on the production function. The target set by 

firm provided the tradeoffs between MPSS and demand fulfillment. 
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