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Abstract
A firm tends to associate capacity planning witloremic scale size and demand

fulfillment for profit maximization. However, it if'oublesome capacity dilemmas to
achieve both of them simultaneously in stochastwirenment. We propose a
multi-objective stochastic programming with dataveopment analysis (DEA)

constraints to find a compromise efficient benchmar
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| ntroduction

Capacity planning plays an important role in a f&rstrategy development and core
competence enhancement. To determine potentialath&tntages, microeconomics
tends to use economies of scale that reduce thgeo®utput, since the fixed costs
are spread out over more units of output when asing scale size. Banker (1984)
defined MPSS as the production scale size at wthiehaverage productivity of a
production unit is maximized. Demand fluctuation®duce a mismatch between
capacity level and realized demand. Clearly, demtfdiment leads to revenue
maximization since selling more products both @eatrofits and conserves resources.
In particular, demand forecasting and scale sizesoims provide some guidelines to
employment planning and inventory management. Theseissues motivate this
study.

Thus, a firm on one hand would like to identify teeonomic scale size for cost
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minimization per unit of product but on the otheould like to satisfy the demand
level for maximizing revenue. However, in practiadjrm may not achieve these two
objectives simultaneously and faces a capacityraila. Figure 1 illustrates Firm As
capacity dilemma on a single-input and single-outptoduction function. The
S-shaped curve describes the production functi@htila@ dashed line is the constant
returns-to-scale frontier that identifies the MP$8nhchmark on the production
function (Banker, 1984)D, indicates Firm As demand forecast and truncates t
production function by the poinbf (i.e. demand fulfillment). Located below the
production function, Firm A represents inefficiendyacing a capacity dilemma
between MPSS and demand fulfillment, Firm A need®tmulate the multi-objective
decision analysis (MODA) problem. Based on the dasts and estimates of scale
size, cost structure, and expected revenue a feed o move towards the target
which shows a tradeoff between MPSS benchmark anthdd fulfillment D .

This study makes three contributions to the litesat First, we push a typical
“ex-post” data envelopment analysis (DEA) studypodduction function estimation
towards an “ex-ante” DEA analysis for capacity pliaug. In fact, DEA is not only a
method for estimating productive efficiency butoa#s approach finding direction for
productivity improvement. We focus on how to séar@et on the production function
and move towards it can guide capacity planningoBeé, we address the capacity
dilemma between the MPSS and demand fulfilmenusiyng MODA to develop a
compromise solution. The trade-off between an MR&@St-oriented) strategy and a
demand-chasing (revenue-oriented) strategy showves ribk preference of the
decision-maker. Third, the solution comparison ofMRl model and SP technique
when addressing decision under strict uncertaimpples useful managerial insights.
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Figure 1- Capacity dilemma
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Most Productive Scale Size

An empirical production function characterizing gouation possibility set (PPS) can
be estimated by data envelopment analysis (DEAZKBaet al., 1984). Lek € R}
denote the input vector angle ]Ri{r denote the output vector of the production
system. Define the production possibility setTas: {(x,y): x can produce y} and
estimate it by a piece-wise linear concave funcéioneloping all observations shown
in (1), i.e. DEA formulation. Leti = {1,2,...,I} be the indexed set of inputs,
i=1{12,..,]} be the indexed set of output, akd= {1,2, ..., K} be the indexed set
of firms. Indexr is an alias of index k for a specific firnX; is thei™" input
resource, Yj, is the amount of thej™ production output, and\, is the
convex-combination multiplier of the&k™ firm. The model (1) defines the
empirically estimated variable-returns-to-scale 8yRroduction possibility seT VRS,

TVRS = {(% y)| Zitcs MYix = V), Vi Tior McXie < %, Vi Do e = L 2 0,9k (1)

Measure the efficienc®VRS using the DEA estimator. For a specific firmwe can
measure the VRS input-oriented technical efficie(@g) 6YRS by DYRS(x,,y,) =
sup{BYRS|(8YRSx,, y,) € TVRS}, where YRS < 1, and a firm is technically efficient if
OYRS =1,

Banker (1984) shows that MPSS is equivalent toetffieient benchmark on a
constant-returns-to-scale (CRS) frontier. The ioiei@turns-to-scale is directly related
to the estimation of MPSS since returns-to-scdiestilates the change of marginal
product (MP). Banker (1984) claimed that this eficy measure with respect to
CRS frontier not only captures the technically fioency of a firm, but also any
inefficiency due to the difference of its actuahblscsize from MPSS. Model (2)
defines the empirically estimated CRS productiossyiaility set TCRS.

TORS = (G, )| Zher MYk 2 3, Vi T Mie < 33, Vi e 2 0, VKJ @

Measure the efficienc®CRS using the DEA estimator. For a specific firmwe can
measure the CRS input-oriented overall efficient®E) 65RS by DRS(x,,y,) =
sup{BERS|(BSRSx ., y,) € TCRS}, where SRS < 1, and a firm is overall efficient if
OCRS =1,

To identify the MPSS, based on VRS efficiency measyproject all of the
inefficient firms to their efficient benchmarks dhe VRS frontier via efficiency
measurefVRS. That is, denote the efficient benchmarks ®y?%*x,,y,), where
BYRS* is the optimal solution generated froby®5(x,,y,). Next, let these efficient
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benchmarks be new observations and estimate thR8 €fficiency measur®°RS,
Thus, we can use optimal solutidfy of DERS(8YRS*x,y,) to identify the MPSS if
KA =1.
Figure 2 for a two-input and one-output case. Rostrative purposes, the VRS
DEA frontier in Figure 2 does not need to be geteerérom origin due to DEA's free
disposability property (also called strong dispdl#sh of outputs.
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Figure 2 — MPSS on VRS frontier

Compromise Target between MPSS and Demand

This section presents a compromise solution acegridi MPSS and demand forecast.
For simplicity, we limit discussion to the prodwetifunction with multiple inputs and
single output and apply the proposed solution tedlseparate cases (Casel: Demand
level less than or equal to MP8% Case2: Demand level larger than MP&%nd
smaller than ¥* Case3: Demand level larger thad™®. The notations and
definitions are described.

Let (X%, V7% ) be MPSS observatiork’ on frontier, wherek’ =
{1,2,...,K'}. Denote MPS%™ as peak output of MPSS hull and defiMPSS™aX =
max{y|y € MPSS Hull} and MPS8¥= (x,Y™). Model (3) calculates MPS¥&"

’
( Zflzl AkIXiMkI/JSS = X, Vi \
’
leglzl Ak’YIé\fPSS 2 y;

| I IEST |
\ |2 = 0,vk’; x, = 0,vi; y = 0)

(XM, Y™y = argMax{ y (3)
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Note that there are potential multiple MPSSbenchmarks; however, they do not
affect our illustration. If the price of input ivailable, letc; be the cost of the input
resourcei, and use model (3) to obtain an unique MP¥Svhen replacing the
objective function of model (3) by MaMy — }.; c;x;, where M is a large positive
number.

Denote Y'® as the peak output of the production function.eNibiat the peak
output is limited since PPS is estimated by DEA. Y8 = (X’,Y”). Then calculate
the Y"® using model (4).

Yot AeXige = x;, Vi
K _ Y. >y;
Zk—l kik y (4)

legzl/lk =1
\ e =0,vk; x; > 0,vi; y=0)

(XF,Y?) = argMax{ y

Similarly, obtain a unique solution by replacingjesitive function with Max
My —Y; c;x;. The unique solution of ¥*is an anchor point in DEA.

Based on MPS%* and Y"®| separate the demand scenario into three categorie
for setting compromise targets between MPSS ancadérfulfillment, respectively.
Figure 3, which shows a one-input and one-outpsé calustrates demand scenario
regarding the three cases.
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Figure 3 — Demand scenario with respect to thresesa
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Aggregated Target under Demand Uncertainty

This section proposes three models to address tmpromise target in an
environment characterized by highly volatile demard practice, however,
continuous distribution of demand is difficult tailal, and therefore we present an
alternative approach, i.e. decision under strictemtainty (i.e. no information about
distribution): minimax regret approach (MMR) ane tbrinciple of indifference with
respect to discrete demand scenario. For the fineggeosed models described below,
Targets = (XL, Y§) is the compromise target obtained from Sectioniv@rg one
specific demand scenaric , and ATarget = (X/T,Y4") is the aggregated
compromise target under demand uncertainty. Theelwidised minimax regret
approach (MMR) (Savage, 1951) addresses decisia®erustrict uncertainty by
guantifying the “regret” when a stochastic eventurs after decision-making. This
approach is conservative, e.g., a decision-makensv avoid the worst case yet
ensure a guaranteed minimum possible payoff. Theetaefers to the “distance”
from the aggregated target to each target undireift demand scenarios. The MMR
approach to minimize the maximal distance from aggted targe(X/”,Y4") to
each individual targetXy,YJS) generated by each corresponding demand scenario,
i.e., our MMR model minimizes the maximum regretarms of all scenarios.

To identify (XAT,Y#T) on the VRS frontier, we apply a sign-constrained
convex nonparametric least squares (CNLS) apprtaastimate the VRS frontier
(Lee et al., 2013). In this study, a typical DEAnfmlation does not successfully
support finding the benchmark on the frontier beeaDEA requires a predetermined
orientation and our MMR model minimizes the dis&u@) in the objective function
rather than an efficiency tern®(®) in DEA. Therefore, we employ an alternative
DEA model, sign-constrained CNLS. Let, and S;, be the decision variables of
intercept and slope ofth input of firm k with respect to the linear regression,
respectively.g, is the decision variable representing the inadficy term. Index h
is an alias of indeX representing firm. Formulate the sign-constrai@LS as
model (5) ande;, and g, are optimal solutions. In model (5), the first straint
represents linear hyperplane, the second constiapbse concavity and the
monotonicity on the underlying unknown productiomdtion is imposed by the third
constraint, and the sign constraigt < 0 denotes the inefficiency term.

(ax, Bir) = argMin
Y = ap + X Bu Xir + & Vk;
Y, e2 o + 3 Bix Xik < an + X Bin Xir, Vk,Vhand k # h; (5)
Bix = 0,Vi,Vk;
\ & < 0,Vk; J
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Next, minimize the maximum distance (our MMR stggleto each target
(XE,vT) and find the aggregated targgt?”,Y*") by following model (6). If the
input price and output price are available, forrteite first constrainp|Y! — y| +
Y ci|XE — x| <d, Vs, and then measure the distance in dollars. Zebe the
binary variable of firmk for choosing one linear hyperplane in CNLS. Thaleld6)
with objective functionMd — (py — ; ¢;x;) can be formulated to obtain the
unique aggregated target.

(XAT,v4T) = argMin

( Py +ys) + X cilxs +xi5) < d,Vs)
x; = XL —xt + x7;, Vi, Vs;

y =Y -yt +y5,Vs;
y<ap+2; Bixi+ M1 —z),Vk;
y=ap+2; Bixi— M1 —z),Vk;
{Md — (py = %; cixi) Yy zx = 1; - (6)

Yiem1 AeXie < %, Vi
Y1 Y = v
Ik{=1 A =1
z, € {0,1},Vk; A, = 0,Vk;
. X,V Xin Xis, Vi, Ve = 0,Vi,¥s )

The second proposed model, the “EV model”, assutinat all demands are
equally likely to occur only when there is no knedde indicating unequal
probabilities, and calculates the expected valuedehand scenarios with equal
probability. Let D, be the demand of scenarso of rth firm. Define the expected

value of demand defined aB, =%Z§=1Dm, Vj. Using the case identification

described in the previous section, apply the EV ehad generate the compromise
target with respect to this expected-value scenario

The third proposed model, the “SP model”, appliestzastic programming (SP)
with two-stage recourse problem to set the aggeegaarget(X/T,Y4T). The
first-stage decision, i.e. the here-and-now, cp@wads to selecting the aggregated
target based on the demand forecasts. After densamdalized, the second-stage
decision, i.e. the wait-and-see, corresponds to nin@mization of the expected
recourse function (i.e. expected regret) with resge all scenarios with equal
probability. Replace the decision varialidleby d,; associated with each scenatio

and change the objective function MS{%ZS ds) — (py — X; cix;) in model (6).
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Computational Study

This section describes the experimental setup &edperformance of the three
solution approaches addressing uncertainty. Fikratldata motivates this study. We
introduce sufficient variation in the data setevwaluate the solution approaches under
different conditions and to study the impact of fireblem parameters on capacity
decisions. The sets of values for the various patars in the model are as follows.
Production function We use the data generating process (DGP) fortwioe
inputs and single output production function, andneyate 50 efficient
observations on the frontier given By = (X;x)%*(X,)%*, where X;;, and
X, independently follow uniform distributio®niform(1,10).
Price of input and outputdVe assume price availability inputs and outpots f
allocatively efficient benchmark and uniquenesst pe= 15, ¢; = 6, and
cy; = 4.
Inefficient firm r. We assume one inefficient firm for finding the compromise
target and randomly generate it &s,( X,,.Y, ) = (4.836,6.315,3.638).

We randomly generate 50 VRS efficient observatioasDGP and find that 7
observations are MPSS. In particular, the peak ututp MPSS hull is MPSB=
(xM,xM,yM) = (2.002,6.107,2.722). The peak output of production function is
Y™™ = (xP, x2,Y?) = (8.979,8.868,5.760) . For simplicity, we discuss three
demand forecasts generated fraMormal(Y,,1) to represent the Casel with
demand level 2.479, Case2 with demand 4.075, ard3aith demand 6.027.

For the first demand scenario with lower demamgli¢i.e. Casel), we identify
MPSS-DF as MPSS-D¥ (2.007,4.839,2.479). Thus, the inefficient firm can drive
productivity towards MPSS-DF without a tradeoffleén MPSS and demand.

For the second demand scenario with larger deremedthan MPS%™ and less
than ynex (i.e. Case2), we identify the
DF-cMPSS® = (xP,x2,YP) = (4.640,7.226,4.075) . Given different tradeoff
parameterw with bin size equal to 0.1, we formulate a congerbination between
MPSS™ and DF-cMPS%™ and calculate ConMD as in Table 1. The target
approximate to profit maximization is (3.433, 6.834621) with profit 4.882.

For the third demand scenario, with larger demlamdl than Y'® (i.e. Case3),
we formulate a convex combination between MP83ind Y" and calculate
ConMY as in Table 2. The target approximate to ipmo&aximization benchmark is
MPSS™ = (3.433, 6.834, 3.521) with profit 4.393. The résHows that it is not
worthy to catch the higher demand level when todrfan MPSS by considering the
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DMR effect of the production function.

Table 1 — Tradeoff between MP8%nd DF-cMPS%™

w ConMD= (XP,y™?) o* Target = (X1, X5,,Y) Profit
DF-cMPS$S™?

0 (4.640, 7.226, 4.075) 1 (4.640, 7.226, 4.075 4.38

0.1 (4.376, 7.114, 3.940) 1.034 (4.360, 7.141,B.95 4.522

0.2 (4.112, 7.002, 3.804) 1.063 (4.067, 7.045,3.8] 4.639

0.3 (3.848, 6.890, 3.669) 1.092 (3.757, 6.943,B.67] 4.762

04 (3.585, 6.778, 3.534) 1121 (3.433, 6.834, 3.521) 4.882

05 | (3.321, 6.667, 3.398) 1.115|  (3.146, 6.707,B.3] 4.859
06 | (3.057,6.554, 3.263) 1.097|  (2.884,6578,B22 4.786
07 | (2.793, 6.442, 3.128) 1.080]  (2.631, 6.453,B.08 4.715
08 | (2.529, 6.330, 2.993) 1.062]  (2.386,6.331,2.95 4.646
09 | (2.266,6.219, 2.857) 1.030]  (2.188, 6.216,2,88 4.516
1.0 MPSS™ 1 (2.002, 6.107, 2.722)  4.393
: (2.002, 6.107, 2.722) 002, 6.107, 2. :
Table 2- Tradeoff between MP8¥and Y
w ConMY= (X", v™") 0 Target = (X1, X,,Y) Profit
Yma)‘
0 ©.979 8.868,5760) (8.979, 8.868, 5.760)  -2.946
01 | (8.281,8592 5456)  1.142|  (8.770,8.916 871 -2.568
0.2 (7.583, 8.316, 5.152 1331  (8.493, 8.979, 5.654 -2.064
03 | (6.886,8.040,4.849) 1595  (8.106,9.067,%56 -1.361
04 | (6.188,7.764, 4.545)  1.968|  (7.497, 9.166,342 -0.303
05 | (5.490,7.487,4241) 2328  (6.360, 9.045,504 1.296
06 | (4793 7.211,3.937)  2.259]  (4.738,8.340,431 2.924
0.7 | (4.095 6935 3.633)  1973] (3.374, 7.539,B60 4.039
0.8 | (3.397,6.659,3.330) 1531  (2.633,6.842,@16 4.324
09 | (2.700,6.383,3.026)  1.214]  (2.243,6.397,2.80 4.378
1.0 MPSS™ 1 (2.002,6.107, 2.722) | 4393
' (2.002, 6.107, 2.722) 002, 6.107, 2. :

Again, we use the three scenarios (i.e. demanddsts) above and use the three
proposed models to calculate the aggregated targitr demand uncertainty. In the
MMR model, we define regret as the distance meafsare the aggregated target to
each individual target found by each demand scerseparately. MMR shows the
aggregated target i€x{'", X47,v4") = (3.210, 5.021, 3.021) using model (11). In
the EV model, based on the principle of indiffergnthe expected demar. =
4.193 corresponds to Case2. Thus, we calculat®fheMPSS® = (xP xP yP) =
(4.826,7.476,4.193), and then the aggregated target is (3.216, 6.83%33). In the
SP model, the two-stage recourse problem genetiagesggregated target (2.002,
6.107, 2.722) as MPS$.
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To summarize, the MMR model assessing the regret mmimizing the
maximal regret leads to the worst case analysigrevthe target is generated by an
outlier demand scenario. Thus, the MMR model issgme to the outlier and
provides a conservative target. In the EV mode,ghnciple of indifference supports
the equal probability of each scenario and the E)dehcalculates the expected value
of demand scenarios as only one dummy scenario.leWthie method is
straightforward, it may smooth out the outlier atichinate the worst-case effect. The
SP model with two-stage resource problem considiéidemand scenarios including
the outlier effect. Because it minimizes the expeatcourse function, the SP model
provides the most robust solution like MP8Sto address demand fluctuation. As
mentioned, in the long run, MP38%¥ provides a cost-minimization benchmark
addressing uncertainty due to an economic scaée $ize result of SP model gives
insights to justify that capacity installation shdbuefer to economic scale size to
address future uncertainty.

Conclusion

This study described a capacity dilemma- MPSS werdemand fulfilment. A
multi-objective decision analysis (MODA) is requdrim the case of a firm that on one
hand would like to identify the economic scale d@mecost minimization per unit of
product but on the other would like to satisfy themand level for minimizing
inventory loss (i.e. capacity surplus) or maximggiprofit by reducing loss of sales
(i.e. capacity shortage). Models were proposedi¢atify the MPSS benchmark and
the benchmark close to demand forecast on the ptiodufunction. The target set by
firm provided the tradeoffs between MPSS and denfiaifidment.
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