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Abstract

In disassemble-to-order (DTO) systems randomness of recoverable parts gained from used
products creates a major challenge for appropriate planning. Typically, it is assumed that yields
from disassembly are either stochastically proportional (SP) or follow a binomial (BI) process. In
the case of yield misspecification, it can be shown that the Bl yield assumption usually results in
a lower penalty than the SP yield assumption. For Bl yield, however, a suitable, powerful heuristic
is needed in order to facilitate DTO problem solving for complex real-world product structures.
We present a heuristic approach that is based on a decomposition procedure for the underlying
non-linear stochastic optimization problem and that can be applied to problems of arbitrary size.
A numerical performance study reveals that this heuristic yields close-to-optimal results.
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Introduction

Disassemble-to-order (DTO) systems are characterized by the determination of disassembly lot
sizes in a way that the demand for remanufactured products can be met by the outcome of the
disassembling and remanufacturing process. DTO systems require an adequate characterization of
the yield loss process and, in particular, the distribution of the yield loss. The two most common
forms of modeling yield uncertainty are stochastically proportional (SP) yield where the yield rate
distribution is independent from the lot size and binomial (BI) yield where the outcome of a non-
defective unit follows a Bernoulli process. Both modeling forms have their advantages and
disadvantages. While SP yield allows to specify both mean and variance of the yield rate, the
downside is the assumption that the yield rate is independent of the lot size. On the other hand, Bl



yield only needs to specify a single parameter, however, it does not allow to specify the variance
of the yield rate independently of the lot size. Yano and Lee (1995) provide a comprehensive
review of stochastic yield formulations in lot sizing problems.

DTO problems with stochastic yields are in general complicated and difficult to solve to
optimality. Hence, several heuristic approaches have been developed. Inderfurth and Langella
(2003) provide the first contribution to DTO systems under SP yields. This work was motivated
by the automotive industry where disassembling and remanufacturing of engines has gained
particular importance as car manufacturers try to support their customers with spare parts as long
as possible. Inderfurth and Langella (2006) extend the prior work by providing improved single
period heuristics of varying complexity which perform very well. In this context, they have
developed different procedures to decompose the complex original problem into smaller
subproblems that are easier to handle. In the original DTO problem ““many" different parts can be
obtained from disassembling ““many" different engine types (Many-to-Many product structure,
MTM) where product part commonality plays an important role. The decomposition of the original
problem leads first to One-to-One (OTO) relationships between parts engines and second to One-
to-Many relationships (OTM), where many parts can be obtained from one engine. An extensive
numerical study underlines the promising performance of the developed heuristics. Langella
(2007) extends this analysis to multiple planning periods by providing and testing heuristics for
the multi-period problem in addition to developing heuristics for deterministic yield cases with
and without constraints on returned items. Inderfurth and Langella (2008) provide recourse model
formulations for both the single and multiple period problem with stochastic yields and provide a
glimpse into the computational complexity of models.

Preceding contributions have focused on DTO problems with complete disassembly under
stochastically proportional yield assumption. To extend the existing work, Vogelgesang et al.
(2012) just recently have addressed the case of binomial yield. Motivated by a data set form car
engine disassembly, Vogelgesang et al. (2012) have analyzed which yield type results in a best fit
to this data set. Thereby, it turned out that neither of the two yield types, Bl and SP could definitely
be rejected from explaining the empirical yield observations. Additionally, they have examined
the impact of a misspecification of the underlying yield type and found that if the yield type is
unknown, one should prefer the Bl yield assumption. Since a full enumeration is necessary to
determine the disassembly lot sizes for the specific product structure with many engines, parts and
part commonality under Bl yield, it is highly desirable to develop a well performing heuristic to
accelerate the computation.

This paper proposes such a heuristic approach that is based on a decomposition procedure
for the underlying non-linear stochastic optimization problem and that can be applied to problems
of arbitrary size. A numerical performance study reveals that this heuristic yields close-to-optimal
results.

Product Structure and Problem Description

DTO problems in practice often refer to situations with a two-digit number of cores (e.g. engine
types) and leaves (e.g. parts of engines) showing a high degree of commonality. For sake of



simplicity, in this paper we consider a basic simple problem structure for which it is easy to explain
our heuristic and to test its performance.

We consider a simplified remanufacturing structure where two returned products, 1 and 2
(for example engine types), are disassembled into three parts, A, B, and C. As the parts cannot be
further disassembled, they are referred to as leaves while the returned products are referred to as
cores. This problem structure is visualized in Figure 1. It is the simplest structure that contains all
relevant aspects, i.e., multiplicity of cores as well as commonality and singularity of parts.

Figure 1: Product Structure (Many-to-Many Relationship)

One can see that part A and C are unique to cores 1 and 2, respectively, while part B is
common to both cores.

For formal problem description we use the following notation:

. setofcoresi (ie{l,2})

I

K . setof partsk (k e{A,B,C})

D, . total demand of part k

c’ . disassembling cost per core type i

c’ . external procurement cost for part k

c! . disposal cost for part k

Pi . success probability for obtaining a reusable part k from engine type i
Q, . disassembly lot size of core type i

Y, (Q.) : random yield of part k that results from disassembling of Q,

C . total cost

We consider a single-period problem and assume that the demands of the three parts are
known and that there is no restriction to the amount of engines that should be disassembled. These
assumptions are driven by our experience from the automotive industry. Customers announce a
demand for remanufactured parts and, if the outcome of the disassembling process is less than the
demand, an external procurement of the missing parts is necessary. This results in a two-stage-
decision process. At first, one has to decide how many of each engine type should be disassembled,
taking into account that the disassembly process is characterized by uncertain yield due to different

rates of wear. That results in costs ¢/ per engine type i. Second, after the total yield is known,



missing parts can be procured externally at cost c or an excess of parts has to be disposed of at
costs cf .

The firms objective is to minimize the expected total cost consisting of the disassembly
cost of both cores and the expected external procurement and disposal cost in case of a possible
lack or excess of parts after disassembly. The cost function can be formalized as follows:

C(Q.Q,) =2 c/Q+E, [ZCE maX{Dk —ZYik(Qi),OHJr Ev, {ZCE maX{ZYik(Qi)_Dkio}j| 1)

iel keK iel keK iel
The only restriction that needs to be considered in this problem formulation is the non-
negativity of the decision variables (Q, >0). The problem of minimizing cost function (1) is a

non-linear optimization problem under general yield functions Y;, (Q.) does not necessarily possess

an advantageous solution property like convexity. In particular, if yield is assumed to be of the Bl
type, it can be shown that the objective function is not necessarily convex. Under Bl yield, the

yield term Y, (Q,) is binomially distributed with success probability p, . Thus, mean and variance
of Y, (Q)is p, and p, (1- P, )Q., respectively. Using the probabilities for binomially distributed

random variables, Pr(Yik(Qi):x):[?(‘jf)ixk(l— p, )%, the cost function in (1) can be

reformulated as:
C(Qlan) = Clel +C;Q2
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A determination of values Q, and Q, that minimize C(Q,,Q,) via full enumeration needs

a very high computational effort, especially if demands for the parts A B and C are very high.
Moreover, an extension of the product structure (more engines, more common parts) will increase
the effort considerably so that it is essential to develop a simple, but powerful heuristic.



OTM-heuristic

We decompose the Many-to-Many (MTM) relationship in the above product structure into two
sub-problems which results in two One-to-Many (OTM) relationships of engines and parts (see
Figure 2).
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Figure 2: Core Separation

For solving these sub-problems independently, a split of the total demand for part B, which
can be obtained from disassembling engine type 1 as well as engine type 2 into D,zand D,gis
necessary (with D,; + D,; = Dg ). In the following, we present a very effective procedure to split

the demand and describe the steps that have to be performed to find near-optimal solutions for the
DTO problem under Bl yields as given in (2). The basic idea of the demand splitting is to reduce

the MTM problem to a deterministic one by treating the Bl success probabilities p, as fixed yield
rates P, so that the yield functions become deterministic: Y, (Q,) = P, -Q, . Under these conditions

we carry out a marginal cost analysis in order to decide how demand volume D; can be gained from
disassembling both cores in a most cost-effective way.

Therefore, we substitute the uncertain yield rates by deterministic ones and concentrate on
the common part B. At first, one has to determine the demand-based disassembly lot sizes Q,

assuming deterministic yield rates P, for each engine type i and each part k and a One-to-One-

relationship  between parts and engines (e.g. engine type 1 - part A)
-~ D, = Dy = D, = D, :
(QlA:_—A, Qs =—"2,Q, =—2, Qy :_—CJ. Afterwards, we analyze each engine type
1A 1B 2B 2C

separately and start with a distinction of cases.

We illustrate this procedure in detail for engine type 1 with part A and common part B. At
first we analyze the case Q,, < Q. If the disassembly lot size Qis in the range between 0 and

Q,, the question arises which savings from avoiding external procurement of part A can be
achieved if the disassembly decision is to obtain one “good” B-part. The marginal cost is given as

w_C _CaPu £ A S : @ _ C  CaPia

05 =————-—2.0n the other hand, if Q, <Q, <Q;, the marginal cost 6,3’ = —+-—-2—~
plB plB plB plB

reflects the fact that additional cost for the disposal of part A would occur if the goal is to obtain a

good B-part from disassembling engine type 1. In the second case, Q,, > Q,;, the relevant lot size



is in between 0 and Q,, which leads to marginal cost 5 that is equal to 5% . This can be done

analogously for 5%, 52 and 5.

To decide which part of the demand D, should be allocated to subproblem 1 or subproblem
2, we have to create an ascending sequence of the marginal costs & to identify the profitable lot-

size intervals. Following this sequence of marginal costs we decide in which sequence and to which
extent both cores should be disassembled.

A general formulation for the above described procedure is given in the following pseudo code:

1. Demand split:

(a) Determine disassembly lot sizes for each engine type i and each part k assuming
deterministic yield rates p, : Q, _D. Qs _Ds Qs =E)—B,(§2C _ D

1A 1B 2B pZC
(b) Determine the marginal costs of producing one unit of B, 5, of each engine type i.
(B is the common part, k is either A if i=1 or C if i=2).
Fori=1to?2
If Q, <Qg then
If 0<Q <Q, then
50 _ G &Py
ﬁiB ﬁiB
Else if Q, <Q <Qg then

o = P
piB piB
End if.
Else if Q, >Q, then
5 =6
End if.

Next i.
(c) Create ascending sequence of marginal costs 59 .

(d) Create demand split (D + D,g = Dj ).

I. Start with the minimum value in the sequence of marginal costs
{54)} for allocating as much as possible of the total demand of part B

(Dg) tocore 1 (D) or core 2 (D,g) . The allocation decision is limited



by the upper bound of the order size interval (relevant order size is at most
Q) where the MIN {54} refers to.

i If D;+D,; =D, thengoto (e).
iii. If D, +D,, <D, then delete MIN {5} from the set of marginal
costs {6}and repeat step (d)
(e) end.

2. Disassembly lot size determination: Determination of disassembly lot-sizes Q" (i=1,2) via

full enumeration of the respective single-core problems so that the respective cost function is
minimized using the demand split from step 1.

QiJr from MIN C(Qi) = Ciz 'Qi + Ckp 'min{DZk:l'Qi}{( Dk —X){?(i ].(pik)x'(l_ bik)Qi_x}

x=0

min{D;z-1,Q;} Q
+Cp Z |:(DiB_X)( j(plB) (1 p|B)QI j|

X=

+ CI? [ ?(I (plk) '(1_ f’ik)Qix}

x=D +1

+ Gy Z {(X D, )( ](p.g) (L= Pe)® }

X=Djg +1

3. Adapt demand split

Djs =Round( - _Ql 'ﬁli — DBJ
Ql ‘Pig +Qz Pz

4. Repeat disassembly lot size determination, resulting in Ql and QZ

. Determine corresponding costs C(Ql,(jz)
6. END

This heuristic OTM approach can also be applied to more general product structures. To
this end the demand split procedure must simply be extended to the case of multiple common
parts from multiple cores.



Performance Analysis

To examine the performance of the OTM-Heuristic we did run a numerical study where we chose
the problem parameters randomly from given parameter ranges. We evaluated the performance
using the relative cost deviation in percent which is calculated as:

A =100- C(Ql’éz) :C(*Q:’Q;)
CQ,Q)

®3)

As parameter ranges we defined:
e Procurementcost: ¢/ e{L2;..;10} vk

e Disposal cost: ci €{0;1;.;6}with ¢ <c? Wk

e Success probability:  f, {0.5;0.6;0.7;0.8;0.9} Vi, k

e Disassembly cost: ¢’ €{0;1,2;.;15} Vi andwith ¢ <f,c’+f,,c, Vi we assure,
that disassembling is profitable (if parts | and m are contained in engine type i)

e Demand: D, €{4;5;.;30} vk

Assuming a discrete uniform distribution for each of these parameters, we randomly created 200
different parameter combinations. We then computed the respective minimal costs and the
corresponding costs from applying the OTM-Heuristic.

In 1781 of the analyzed instances we observed cost deviations of less than 0.5%. This
corresponds to approximately 89% of all instances and underlines the promising performance of
the OTM-heuristic. From figure Figure 3 we can additionally observe that there is only a very
small amount of instances where the cost deviations exceed the 1%-level. On average, we
experienced a relative cost deviation of only 0.19% (median: .00 %, worst case: 6.21%).
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Figure 3: Frequency of cost deviations

Conclusion and outlook

There is a need to develop effective heuristics to solve the stochastic DTO problem for instances
of arbitrary size. In this paper such a heuristic is presented which basically relies on separating the
stochastic multiple-core problem into multiple single-core ones. To this end a demand split for
common parts is necessary for which a very effective procedure has been developed. A first
numerical study reveals that the total heuristic solution procedure leads to close-to-optimal results.

It is matter of future research to carry out more comprehensive numerical tests which also
should give more insights for which parameter constellations our heuristic may need to be refined.
An additional interesting point for further research would be to extend the OTM-heuristic to the
multi-period case.
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