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Abstract

We study a periodic review order-up-to policy for a two-echelon dual-channel system. The upper
echelon satisfies online demand and replenishes the lower echelon while the lower echelon
fulfills walk-in demand. In case of shortage, demand shift is considered. We evaluate the cost
and characterize the optimal policy analytically and numerically.
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Introduction

In a two-echelon dual-channel system, a company who sells a single product has two sales
channels. One is direct shipping from the warehouse to a digital consumer and the other is
satisfying a walk-in consumer via the on-hand inventory at a retail store where the store is
replenished from the warehouse. Figure 1 depicts such a system.

There are some but not many literatures on inventory management for two-echelon dual-
channel systems. Chiang and Monahan (2005) consider a one-for-one inventory control policy
such that each fulfilled demand triggers an order at the upper stream. Numerical experiments
demonstrate that the dual-channel strategy outperforms a single-channel one in terms of
inventory holding and lost sales costs in most cases. Takahashi et al. (2011) propose an (s, S)
policy for a system with setup costs. Production at the warehouse (resp. Delivery to the store)
starts when the warehouse (resp. store) inventory drops below the minimum and stops when it
reaches the maximum. They compare the proposed policy with the one-for-one and show that the
proposed policy reduces both the number of setups and the total cost. Mahar et al. (2009)
propose two dynamic assignment policies on how to assign an online order to one of the e-
fulfillment locations in a real-time manner. The proposed policies lead to cost savings while
compared to the optimal static policy.

In this paper, we study a two-echelon dual-channel system that adopts periodic review
and consider how to allocate the total system stock to the warehouse and the store, so as to
minimize system inventory costs (= holding + backordering cost). Both a static policy (the store
order-up-to level at each review epoch is decided before time 0) and a dynamic policy (the store
order-up-to level at the current review epoch is specified after observing past system demand)
are investigated. Our contribution is twofold. First, under some circumstance, we find that past
allocation decisions do not afflict future system inventory costs. Second, the optimal dynamic
policy is superior to a static policy in all cases.
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The remaining sections are organized as the following. We first specify assumptions and
notations. After that, we conduct analysis on the two inventory control policies, i.e., a static
policy and a dynamic one. Thereafter, numerical results are shown to illustrate the effectiveness
of the dynamic policy. We summarize key findings in the end.
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Figure 1 — A two-echelon dual-channel supply chain

Model

Assumptions

At time ¢t = mT,,, m € N, the warehouse orders from an external party and raises the system
inventory position IP(= on-hand inventory at the warehouse and the store + in-transit inventory
to the warehouse and the store — consumer backorders at the warehouse and the store) to S;. All
of the ordered units arrive at the warehouse after the fixed lead time [,,. At each review epoch
t=1,+nT,, neN, the retailer places an order to the warehouse to raise store nominal
inventory position NIPs(= on-hand inventory at the store + on-order inventory to the store —
consumer backorders at the store) to S, .. If the warehouse has sufficient stock, it ships out all
ordered units to the store; otherwise, it delivers all on-hand stock and backorders the remaining
unsatisfied amount. This replenishment arrives at the store after the fixed lead time .. Moreover,
at a store review epoch, if there are online backorders at the warehouse, we allow ship-from-
store, i.e., delivering an online order by using store inventories. Walk-in and online demands are
two independent Poisson processes with rate A, and \,,, respectively. A walk-in demand is
satisfied by on-hand stock at the store while an online order is delivered directly from the
warehouse. In case of no on-hand stock at the location, a consumer demand is backordered at the
originating location with the backordering cost rate 4 until its delivery starts (for an online order)
or a unit becomes available at the store (for a walk-in order). Each unit kept at the store (resp.
warehouse) is subject to a holding cost rate i, h, < b (resp. h,,, h, <0b) and h,, < h,. We
assume that S, is pre-determined and aim to determine the optimal S, , to minimize system



inventory costs. As the process restarts itself at time ¢ = mT,,, m € N, we consider system
inventory costs over the first 7,

Notations
Table 1 defines other notations to be used in the next sections.

Table 1 — Notations

Notations Definitions

Cn(IL,S;) Warehouse inventory costs in [l,, + nT%, L, + (n + 1)T) + store inventory
costs in [ly, + ls + nTs, 1y + 1s + (n + 1)T5), when system inventory level
is /L. and store order-up-to level is S, at ., + nT,

Csn(IPs) Store inventory costs over [l,, + Is + nTs, L, + Is + (n + 1)T%), when store
inventory position at time [,, + nT,is I P
Cywn(ILy) Warehouse inventory costs over [, + nTs, 1, + (n + 1)T5), when

warehouse inventory level at time [,,, +nT, is I L.,

Dltq,t2) (resp. Dy, D) Total (resp. walk-in, online) consumer demand in the time interval [¢1, #2)

G(d,\) Poisson cdf with mean X at d
n An integer in [0, T, /T5)
S_;f,,,( IL) The optimal store order-up-to level when system inventory level is 7 7. at
time ., + n1 in the dynamic environment
Sen The optimal store order-up-to level at [, + nT in the static environment
Store inventory position = in-transit inventory + on-hand inventory — consumer backorders at the
store
System inventory level = on-hand inventory at the warehouse and the store + in-transit inventory to
the store — consumer backorders at the warehouse and the store
Warehouse inventory level = on-hand inventory — consumer backorders at the warehouse
= = max{—z,0}
a7t = max{z, 0}
Analysis

In this section, we first prove that the minimization problem over 7., is equivalent to 7., /T,
independent minimization problems over T,. Then we consider a static policy where the optimal
store order-up-levels are determined before time 0. After that, we propose a dynamic policy
which announces the optimal store order-up-to level after observing the current system inventory
level.

Proposition 1. C,, is independent of S, ;, i = 0,...,n — 1,

Proof. Given D|0,l,, + nTs) = d, system inventory level at l,, + nTiS Sy — d. From the
assumptions we note that

CTI.(SU - da S.s.n-) = C’w,n(ma‘X{O; SU - d - S.s,n}) + Cs,rL(Hlin{SU - (]’_ﬂ Ss,n}) (1)

where
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Cw,-n(IL'w) =E |:f h’w [ILw - Dw [t(% t(l + t)} N +0b I:IL*U; _ Dw [t“, t[) + IL)] - dt:| (2)
0

Is+Ts
C‘.,»_-”,(IP;,-) - E|: / h.s’ [IP" - D.‘a’[t(): to + f)} " + b[IP.,. - D_.,»[t(], to + t)] - dt:| (3)
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with ¢ = [, + nT. All of the three equations (1), (2) and (3) are not related to S, ;. Q.E.D.

In other words, past stock allocations do not affect future system inventory costs.
Intuitively, it is because at a store review epoch, we are reallocating the net system stock which
only depends on the past demand realization.

Remark. Note that in writing C, (S, — d, Ss,,) as Equation (1), we are using two
assumptions. One is that the backordering cost rate at the warehouse is the same as that at the
retail store, so we can count the warehouse inventory level as non-negative and all warehouse
online backorders left over from the previous 7T, period into store backorders. The other
assumption used is that demand at one location is satisfied as long as there is on-hand inventory
in this location, so that we have the integrands in Equations (2) and (3). However, when the two
backordering cost rates are different, simply viewing warehouse online backorders as part of
store backorders does not work; moreover, the second assumption needs to be re-justified as
reserving a unit at the location with a low backordering cost rate for a demand at the other
location seems reasonable.

A Static Policy

A static policy specifies S?

» . before time 0. By Proposition 1, S;, solves the following
minimization problem,

min E[C,,_(SU — D|0, 1, + nTj), SH,,,,)], 4

s.t. 0 S Ss,n S SO? ( )

where the expectation is taken over D|0, [,, + nT%).

We justify the constraint in Equation (4) as follows. A negative S, ,, means that there is at

least one backorders at the store. By increasing S,, to 0, we are cutting down system

backordering costs; meanwhile, the holding cost at the warehouse is reduced. On the other hand,

Equation (1) implies that raising NIPs to more than S, does not change E[Cﬂ} from
E[Cn(So — D0, 1, + nTy), Sp)l-

A Dynamic Policy

We propose a dynamic policy to allocate net system stock based on the current system inventory
level. Specifically, after observing D|0,,, + nT) to be d, we are to solve the following problem,

min  C,(So —d, Ssn),

5)
s.t. 0 S Ss!n S S[) — d, ( )



where the justification for the constraint is similar to the one for Equation (4).
Proposition 2. C\,(Sy — d, S,,,) is convex in Sy ,,, 0 < Sg,, < Sy — d.
Proof. For VS, ,, € [0,Sy — d — 1], the first order difference of C, in S, , is

ACn(Ss,n; SO - d) - Cn(s(] - d Ss,n + 1) - Cn(s(] - d Ss,n)

Ts
- / —(hy +b)G(So — d — Sy — 1, At) dt
0 (6)

ls+Ts
+ / (hs 4 b)G(Ssn, Ast) dt.
J1g

It follows from Equation (6) that AC,, (S, ,.; So — d) is increasing in S, and thus Proposition 2
holds. Q.E.D.

Proposition 3. In terms of system inventory costs, the optimal dynamic policy is superior
to the optimal static policy.

Proof. E[C,,] while using the optimal dynamic policy is E[C,L(ILR, S;’fn(ILn))] and it is
IEZ[CR(ILH, S;n)} if the optimal static policy is employed. Let x be a realization of 7/ L,,. Since
S¥ (z) = argming, , Cy(z, S;,), We have

EX{)

Co (2, S*

s,

() < Cul,55,). (7)
As Equation (7) holds for any x, we have

E [Cn(ILn S:n(ILn))] S E[CTL(ILTH S.:,n)]v (8)

and this completes the proof. Q.E.D.

We note that a dynamic policy requires the knowledge on the current system inventory
level. Hence, it is applicable to a system whose real-time inventory level can be easily obtained.

Remark. In both static and dynamic policies, we assume that at a store review epoch store
inventories can be used to satisfy online backorders at the warehouse and call it ship-from-store.
Currently, the practice of ship-from-store is implemented by some companies including Gap Inc.
(Gap Inc., 2013).

Numerical Results

In this section, we conducted two sets of numerical experiments to show the effectiveness of our
dynamic policy. An inventory costs saving from using the optimal dynamic policy (=(optimal
static costs — optimal dynamic costs)/ optimal static costs) of 8.36% is reported.

In the first set of numerical experiments, we choose the control group asl,, = I, = 0.3,
hy =01, h, =05, b=1, A\, =X, =2,T,=2and 7T, = 1. Then we obtain nine treatment
groups where each of them changes one parameter in the control group. Inventory costs savings
are computed for the control group and all treatment groups. Comparisons between the two
groups are depicted in Figure 2.
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Figure 2 — Comparisons between the control and the treatment group

We have two observations from Figure 2. Firstly, there is no evident pattern between the
two groups, i.e., for the same value of Sy, a larger parameter does not necessarily lead to more
costs saving. Secondly, an inventory costs saving is bell shaped in Sy and the dynamic policy
leads to saving when S is moderate and this is explained as follows. A moderate S, renders a
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static policy to allocate so much stock to the store that the warehouse incurs high backordering
cost, whereas a dynamic policy balances the stock at the warehouse and the store at each review
epoch.

In the second set, we vary & from 1 to 10 and keep all other parameters as in the control
group of the first set. For each value of 4, we compute the maximum inventory costs saving
among S;. We find the maximum saving to be increasing in &, as is illustrated in Figure 3. It
implies that as b increases, inventory costs saving can be even larger than the reported maximum,
which makes our dynamic policy even more attractive.
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Figure 3 — Maximum inventory costs saving increases in &

Summary

In this paper, we study stock allocation in a two-echelon dual-channel system which implements
periodic reviews. We find that if online and walk-in demand backordering cost rates are equal,
then store order-up-levels at different review epochs can be decided independently. A dynamic
policy is proposed and the optimal one is guaranteed to outperform any static policy. The
convexity of the cost function makes it easy to compute the optimal order-up-to levels at each
review epoch. Our numerical results indicate that our dynamic policy lead to an 8.36% saving in
system inventory costs and the dynamic policy is most appropriate when system inventory level
is moderate and the backordering cost rate is high.
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