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Abstract

We study how the electric vehicles (EVs) of today would perform in meeting the driving needs of ve-
hicle owners, and propose an optimization model to find locations for charging stations needed to support
EV usage. We take publicly available data from travel surveys that are person oriented and construct vehi-
cle centric datasets. Chicago and Seattle metropolitan areas are selected as showcases for implementation.
The statistical analysis of the datasets for these cities shows that a large majority of the vehicles travel less
than the average range of EVs available in the marketplace. Since the distance traveled is not the only fac-
tor affecting EV range, we develop a user charging model that determines where and how to charge an EV
given all the trips that the vehicle is supposed to make and the availability of the charging infrastructure.
The vehicles that fail to complete all their trips are used as an input to an optimization model that yields
optimal charging station locations. We present optimization results based on the Chicago and Seattle data.

Keywords: electric vehicles, charging station, location optimization

Introduction
Electric vehicles (EVs) have a long history, which even precedes the history of gasoline engine vehicles,
going back as far as the mid 19th century Sulzberger (2004a). Although the dominance of EVs in the
first decade of the 20th century was remarkable, it was short lived Sulzberger (2004b). The last decade
has witnessed a growing interest in EVs, and many policy makers have created incentives to make EV
ownership more attractive. Fluctuating oil prices and concerns over future oil supplies mean that EVs
offer more stability in the cost of ownership than traditional gasoline vehicles. Advances in battery
technology allows EVs to travel further than ever before on a single charge. Overall carbon emissions are
much reduced if cars run on electricity produced at centralized power stations rather than on conventional
gasoline engines. The environmental benefits of EVs may be further enhanced as electricity generation
moves to renewable sources such as wind or solar. Moreover, these sources allow for local generation in
microgrids at individual house/building or neighborhood/town level.

These advantages may be offset by a single important factor, range anxiety Wiederer and Philip
(2010), which is the fear that the EV has insufficient charge, and the driver will be stranded. Unlike a
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gasoline vehicle which can refuel quickly, recharging depleted batteries can take hours. Thus a charging
infrastructure may be crucial in the wider adoption of EVs.

For today’s EV technologies, we study (i) how well EVs would support current driving patterns, and
(ii) the charging infrastructure needed to reduce range anxiety. There are two key inputs to our study:
EV specifications such as range and charging times (Section Basic EV Parameters); and data on driving
patterns of vehicles. Unlike many other studies (e.g., Sweda and Klabjan (2011),Avci et al. (2012)) that
use the National Household Travel Survey (NHTS) U.S. D.O.T., Federal Highway Administration (2009),
we use the Metropolitan Travel Survey Archive (MTSA) University of Minnesota (2009) of the University
of Minnesota. The surveys in the archive contain critical geographical data for the origin and destination
of trips that one cannot find in the NHTS. We chose the Chicago 2007 and Seattle 2006 surveys. Since
these surveys are person centric, we first converted the survey results into vehicle tours: all trips by a
vehicle in chronological order with start/end times, origin/destination, distance traveled, trip purpose,
etc. This step requires careful processing of the survey data to resolve inconsistencies. In Section Travel
Databases, we introduce these travel databases and explain how to create vehicle tours.

Section Statistical Analysis of Driving Patterns uses statistical analysis of the vehicle tour data to see
how well EVs may meet the driving needs of vehicle owners. We study distances traveled and how they
compare to EV ranges. Then we analyze when vehicles travel for various purposes, and we infer potential
times and locations for EV charging.

Next section, A Model for User Charging Decisions, provides a model for EV charging decisions
during a vehicle tour. Instead of an elaborate optimization model that would be unrealistic and difficult
to use, the “user charging model” chooses among three common charging methods available in North
America (level I 120V-AC, level II 240V-AC, level III DC). Given a vehicle tour, initial charge, EV type
and charging availability data, the user charging model determines where to charge with which method.
If the vehicle tour cannot be completed, then this vehicle is considered to be a failed vehicle as an EV. An
important purpose of the EV charging infrastructure is to create a network of charging stations that avoids
such failures. Hence, in the following section, Optimal Placement of Charging Stations, we develop a
mixed integer programming (MIP) model that determines locations for charging stations based on failed
vehicle data. Given how many charging stations to open, the MIP model assigns each failed vehicle to a
station by minimizing the total distance that needs to be traveled to and from the charging stations, which
can be considered as a proxy for aggregate inconvenience.

We implement our approach with all charging from level II home chargers. Level II is the standard
charging method recommended by automakers; and overnight home charging is expected to be the dom-
inant charging scheme due to the limited availability of charging infrastructure in the early days of EV
adoption and cheaper electricity at night Sioshansi (2012). We present the results based on the Chicago
and Seattle data.

Finally, we conclude with a brief discussion of our results and directions for future research.

Basic EV Parameters
An EV is an automobile which is propelled by an electric motor that gets electricity from a battery pack.
This general description includes both plug-in hybrid electric vehicles (PHEVs) and all-electric vehicles.
A PHEV has a battery pack that stores electricity as well as a combustion engine that starts charging the
battery pack when the state of charge hits a certain level. PHEVs now on the market include the Chevy
Volt, Toyota Prius PHEV and Ford C-MAX Energi. Examples of mass produced all-electric vehicles are
the Tesla Model S, Nissan Leaf, Ford Focus Electric and Mitsubishi i-MiEV.

The battery pack of an EV is the major component that determines the range and recharging times,
and it tends to be heavy and expensive. Its capacity depends on the type and size of the vehicle: 16 kWh
for the Volt (with only 10.4 kWh available for consumption), 24 kWh for Nissan Leaf, 23 kWh for Ford
Focus Electric, and 53 kWh for the Tesla Roadster.
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The range on battery power depends on multiple factors including weather (battery packs are sensitive
to temperature change hence are thermally controlled), the use of climate control, speed, driving style,
cargo weight and road conditions, Hayes et al. (2011). We have collected range data for Nissan Leaf
and Chevy Volt from various sources. For example, we have used Hayes et al. (2011), Nissan’s web site
Nissan (2012), and data at Borba (2012) for Nissan Leaf.

Charging times depend on the charging type used:

• Level I: 120 V AC, 16 A (= 1.92 kW). Typical US residential grounded outlet

• Level II: 208-240 V AC, 12-80 A (= 2.5-19.2 kW). Requires installation of a special home charging
dock

• Level III: 300-600 V DC, very high currents (100s of Amperes)

In a Volt, full charging takes about 10 hours at level I, and 4 hours at level II. Because of its higher
capacity battery pack, the Leaf takes roughly 20 hours at level I, and 7 hours at level II. The Leaf’s battery
pack is expected to reach 80% of the capacity from a fully depleted state in 30 minutes using 480 volts
DC 125 amps level III charging.

Travel Databases
A well known source of travel data is NHTS, U.S. D.O.T., Federal Highway Administration (2009). It
gives specific details about the travels of 300,000 people from 150,000 households sampled across the
US, where each household is surveyed about a single randomly chosen day. It gives starting and ending
times for each trip and (unreliable) information about which vehicle is used for each trip. Unfortunately,
trip endpoints do not have even approximate coordinates, and this limits its usefulness for our purposes.

Hence we concentrate on travel data from MTSA University of Minnesota (2009) for the cities of
Chicago and Seattle, where each data source details the vehicle trips for a few thousand households.
For such data sources, surveyed households are assigned a one or two day “diary period” over which they
record their travels. The diary periods for Chicago’s Regional Household Travel Inventory (CRHTI) cover
11 counties (3 of them in Indiana), and span the 12 months of 2007. The 4 counties of the Seattle metro
area are covered by 11 separate surveys, but we are primarily interested in the one with diary periods from
April through June of 2006, Puget Sound Regional Council (2006), Murakami and Watterson (1990).

The surveys for both cities are organized by household and give a series of “trips” for each person in
a surveyed household; e.g., a trip goes from Point A to Point B starting at Time T1 and ending at T2. For
Chicago, there are 10,552 households, 23,808 household members, and 159,856 trips. The corresponding
numbers for Seattle (2006) are 4,746 households, 10,516 people and 87,600 trips.

The Chicago survey specifies 71,346 unique trip endpoint locations, but rounds their coordinates to
census tract centroids to protect respondent identities. The Seattle survey rounds some of the coordinates
to centroids of census tracts (or smaller regions), but it does not specify which were unique before round-
ing. To resolve such inconsistencies and provide a suitable framework for analysis, we preprocess the
survey data to satisfy the following goals:

1. The data should be organized into vehicle tours that specify where each vehicle went on the diary
day.

2. Trip endpoints should be specified as coordinates with uncertainty ranges.

3. Each trip should have a distance specified in terms of road mileage.

4. Each trip has a purpose, and starting and ending times.

Since Goal 1 requires vehicle tours, a natural way to proceed would be to use the “household vehicle
number” to convert the (person-oriented) raw data. Both the Chicago survey and the 2006 Seattle survey
have such a field, but using it to gather trips in order of claimed start time results in impossible vehicle
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tours whose trip endpoints do not match. Hence we created a graph problem by finding trip endpoints
that do match, and looking for Euler paths that visit each trip in such a graph. When this failed, we
organized trips by driver, collapsed sequences of non-car trips, and then used merging for cases when
various household members took turns driving a vehicle.

Since the Chicago data are not consistent with Goal 3, and the Seattle data have distance from an
unknown road mileage model, we recomputed all the distances based on the publicly available street-map
data Bureau (2008). Instead of manually cleaning the data, we just dropped small connected components
before running the shortest path algorithm. Paths were computed to minimize travel time for 60mph
interstate highways, 50mph ramps, 40mph secondary highways, and 25mph local roads. Then the chosen
routes were remeasured for distance.

Statistical Analysis of Driving Patterns
We used the Seattle and Chicago data to analyze driving patterns as follows:

• What is the total driving distance per day?

• How does the number of vehicles on the road depend on the hour of the day?

• How do these numbers change if we restrict the trip purpose (Shopping, Home, Work, Dining, etc.)?

• Are there any major differences between these two cities?

These data could help to estimate how many vehicle owners are potential EV users, and it could also tell
when and where the charging would happen. For instance, we can find the time slots in which there is a
high demand for charging near work locations.

Figure 1 gives the probability density function (pdf) of the total distance driven per day for Chicago
(blue) and Seattle (red). The mean distance per day is 25.7 miles for Seattle and 28.6 miles for Chicago.
About 2.6% and 6% of the vehicles traveled > 73 miles per day in Seattle and Chicago, respectively.
(The 73 mile cut-off is the EPA rated range for Nissan Leaf.) If range anxiety reduces the cut-off to 60
miles, the percentages become 6% and 10% for Seattle and Chicago.

We can also compute the number of vehicles on the road at a given time of the day; Figure 1 shows this
with a 5 minute time granularity. The number of vehicles tends to peak in the morning and the afternoon,
and the agreement between the distributions of both cities is quite good. As mentioned in the previous
section, there is a purpose (work, home, shopping, dining, etc.) for each leg of the vehicle tour, so we
can restrict to a specific purpose. Figure 2 shows the fraction of the vehicles on the road as a function of
time for work, home and shopping related purposes. It appears that U.S. driving patterns do not depend
strongly on the location—it would be interesting to compare with other cities and countries.

Figure 1: Left: The pdf of the driving distance per day for Chicago (blue) and Seattle (red). Right: The
fraction of the total number of vehicles on the road as a function of time.
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Figure 2: The fraction of the total number of vehicles with a specific trip purpose as a function of the hour
of the day. (blue for Chicago and red for Seattle)

A Model for User Charging Decisions
In this section, we model EV owner charging decisions by assuming that they charge as much as possible
at each stop, but they may have a choice of charging methods. Technological parameters such as bat-
tery capacity and charging times as discussed in Section Basic EV Parameters, and the driving patterns
from the travel databases constitute the main inputs for a vehicle owner’s charging decisions. There is
no explicit treatment of alterations in travel schedules or destinations to facilitate charging. The model is
general enough to allow any charging infrastructure (locations, charging methods, and charging access,
i.e., public vs. private) and EV type (PHEV or all-electric vehicle). We conclude the section with numer-
ical experiments where the model is implemented for a very specific charging infrastructure (only home
charging with level II chargers) and EV vehicle pool (all Nissan Leaf).

Consider the “vehicle tour” of vehicle v, which consists of ī individual legs (trips), see Figure 3.
Let Lv,0, Lv,1, . . . , Lv,̄i be the locations visited by vehicle v. For i = 1, . . . , ī, the fraction of total
battery capacity φv,i required for the ith leg from Lv,i−1 to Lv,i depends on the driving condition (urban,
suburban, highway), as well as ambient temperature, road mileage and the type of EV. However, it does
not depend on the charging decisions.

The other key parameter is the fraction of total charge βv,m,i that can be added by using charging
type m while at rest at Lv,i. We consider 3 types of charging: Level I charging (m = 1) uses 120V,
Level II charging (m = 2) uses 240V, and Level III charging (m = 3) uses 480V DC. Of course βv,m,i
depends on the time spent at location Lv,i, but that is part of the travel schedule independent of the
charging decisions.

We define C−v,i as the state of charge when vehicle v completes leg i (≡ comes to rest at location Lv,i)
, and C+

v,i as the state of charge when vehicle v begins leg i+ 1 (≡ vehicle v’s rest ends at location Lv,i).
See Fig. 3 for a schematic description. It is reasonable to assume that if the driver of vehicle v decides to
recharge at the end of leg i, then he/she picks at most one charging option at location Lv,i and recharges
as much as possible. Under this mild assumption, the dynamics for the state of charge are:

C−v,i = C+
v,i−1 − φv,i, and C+

v,i = min(1, C−v,i + βv,m,i),

where m is in set Mi of charging options available at location Lv,i, and C+
v,0 is the initial charge at the
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Figure 3: Schematic description of the vehicle tour of vehicle v.

beginning of the first leg. In practice, Mi is usually empty except when Lv,i is v’s home location. When
it is empty, m = 0 and βv,m,i = 0.

In case there is an i where the set Mv,i has more than one charging option available, one of two
preference lists apply:

N = (2, 1, 3) i.e., try Level II, Level I, then Level III

A = (3, 2, 1) i.e., try Level III, Level II, then Level I.

The “aggressive” preferences list A minimizes the time needed for recharging, and the “normal” prefer-
encesN modifies this to avoid Level III if possible. (Manufacturers recommend this since such charging
degrades the battery.) If usingN for vehicle v at every charging opportunity would cause any C−v,i to drop
below 0, we presume that the driver detects the pending problem while still at location Lv,0 and switches
toA. This is at best a rough approximation to human behavior, but it seems like a reasonable compromise
between a totally naı̈ve strategy and an elaborate economic optimization.

If C−v,i < 0 for some leg i even under the aggressive preferences A, then vehicle v is said to have
failed as an EV. If vehicle v is a PHEV (like the Volt), we just compute how much of the distance from
Lv,i−1 to Lv,i has to be powered by gasoline in order to increase C−v,i to 0. This then gets added to a total
gasoline-powered mileage for vehicle v.

If some vehicle n fails as an EV, it may be useful to determine whether hypothetical additional charg-
ing options could eliminate the problem, and if so, how much such charging is necessary. This infor-
mation is an essential input to the problem of optimal placement of charging stations as discussed in the
next section. Suppose a location Lv,i is given charging options Mv,i that are marked hypothetical. We
can evaluate this situation using essentially the same rules as before, if we generalize some of the data
structures:

• The scalar charge fraction βv,m,i obtainable at Lv,i must be tagged with a fraction of the time spent
at Lv,i that must be devoted to type m charging in order to achieve βv,m,i

• For i′ ≥ i, the state of charge C+
v,i′ becomes an interval where each end of the interval is tagged

with a fraction of the Lv,i time that is devoted to charging.

• C−v,i′ needs such generalizations for i′ > i.

• Generalizing to > 1 hypothetical charging location would complicate things considerably.

The rules for manipulating these data structures are not difficult. Suppose the interval for C+
v,i′−1 is

[c0, c1] and the time fractions for c0 and c1 are (respectively) f0 and f1. Subtracting φv,i′ gives [c0 −
φv,i′ , c1 − φv,i′ ] with the same f0 and f1 unless c0 − φv,i′ < 0. In that case, we get [0, c1 − φv,i′ ] with

f0 +
(φv,i′ − c0)(f1 − f0)

c1 − c0

in place of f0. Similarly, recharging can cause f1 to be reduced if adding βv,m,i to c1 would make it > 1.
The primary result of evaluating the model with a hypothetical charging location is the minimum

recharge fraction f0 for C−
v,̄i

. This is the fraction of the time spent at location Lv,i that must be spent
charging in order to prevent vehicle v from failing as an EV.
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Table 1: Output for the Home Charging Scenario

Chicago 2007 Seattle 2006
All vehicle tours 13176 100% 6647 100%

unique households 8880 100% 4223 100%
1-day diary period 7578 57.5% 277 4.2%
2-day diary period 5598 42.5% 6370 95.8%

Failed vehicle tours 679 5.2% 190 2.9%
unique households 626 7.0% 180 4.3%
1-day diary period 294 43.3% 5 2.6%
2-day diary period 385 56.7% 185 97.4%

Numerical Experiments: Home Charging Scenario
EV manufacturers recommend level II charging over level III due to the detrimental effect of fast charg-
ing on the batteries. Otherwise level II charging is the fastest option, and it typically requires multiple
hours. Such long charging times, a lack of charging infrastructure, and cheaper electricity at night make
overnight home charging at level II the most common charging behavior by households. We can test this
home charging scenario by applying the user charging model to the vehicle tours from Chicago 2007 and
Seattle 2006.

Suppose each household has a level II charger and all charging must be at home. Since PHEV owners
have essentially no range anxiety (due to their combustion engines), we assume that all vehicles in the
datasets are type “Nissan Leaf”. We also assume that vehicles start their first leg of their vehicle tours with
a full battery. Further, we declare census tracts to be urban if population per km2 exceeds 2000, rural if it
is below 20, and otherwise suburban. If a subsegment of a vehicle tour spans multiple census tracts, we
make this determination for a single census tract midway along. Implementing the user charging model
with these assumptions identifies each vehicle that cannot complete its vehicle tour, which we refer to as
a failed vehicle.

Table 1 shows some statistics from the results. There are a total of 13176 (6647) vehicle tours in
Chicago (Seattle) dataset. Almost all the vehicles in Seattle have 2-day diary periods, only 43.2% of the
vehicles in Chicago fall into this category. It is remarkable that only 5.2% of the vehicles fail in Chicago
and this figure drops to 2.9% in Seattle. As the figures suggest, even without a charging infrastructure,
a high percentage of the vehicle owners can make their daily trips by only charging at home with the
current charging and vehicle technology.

Optimal Placement of Charging Stations
This section develops an optimization model for locating charging stations based on the travel datasets
and the user charging model introduced in the previous sections.

Consider a finite time horizon T , divided into equal (e.g., one minute) periods indexed by t. During T ,
a set of vehicles V need to recharge at p charging stations chosen from a set of candidate locations J . For
each vehicle v ∈ V , there are a number of charging options available at various periods and locations.
Each charging option is denoted as a triple (v, t, j) that says vehicle v can be charged at location j in
period t. Define CO as the set of all charging options. For any (v, t, j) ∈ CO, let dv,t,j be the distance
between the location of v in period t and location j, where τv,t,j is the duration of charging required.

Each candidate location j has a capacity Qj that gives the number of vehicles that can charge there
simultaneously. Let yj be a binary decision variable that is 1 if a charging station is opened at location j,
and 0 otherwise. Similarly, xv,t,j is a binary variable that is 1 if vehicle v is charged with option (v, t, j).
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A MIP model for this problem is given below.

min
∑

(v,t,j)∈CO

dv,t,jxv,t,j (1)

s.t.
∑

(v,t,j)∈CO

xv,t,j = 1, ∀v ∈ V (2)

xv,t,j ≤ yj , ∀(v, t, j) ∈ CO (3)∑
(v,s,j)∈CO
s≤t≤s+τv,s,j

xv,t,j ≤ Qjyj , ∀j ∈ J, t ∈ T (4)

∑
j∈J

yj = p (5)

xv,t,j ∈ {0, 1}, ∀(v, t, j) ∈ CO (6)

yj ∈ {0, 1}, ∀j ∈ J (7)

The objective is to minimize the total distance traveled by all vehicles to access the selected charging
stations. Constraint 2 ensures that each vehicle is charged by selecting only one charging option. Con-
straint 3 is a feasible cut introduced for computational purposes—it says vehicle v can charge at location
j only if a charging station is opened there. Constraint 4 ensures that the number of vehicles assigned to a
charging station at location j is not beyond the capacity of that location in any period. Finally, constraint
5 makes sure that exactly p charging stations are opened.

Home Charging Scenario (cont.)
The hypothetical charging options for failed vehicles, which are discussed in the previous section, are
used to generate the input data for the optimization model. Each hypothetical charging option gives the
resting location and start/end time of a vehicle, the amount of charging the vehicle needs and a maximum
distance the vehicle can travel to access a charging station. To generate the set CO of charging options
in the optimization model, we need to augment the hypothetical charging options with the candidate
locations of charging stations. And we need to do so under the constraint that the candidate locations are
within the maximum travel distances of vehicles.

We use the resting locations of all failed vehicles as the set J of candidate locations. In the travel
database, the coordinates of the resting locations are anonymized to those of the census tracts they reside.
Thus even though some of the resting locations such as homes or companies may not be suitable for
placing charging stations, it should be feasible to find nearby locations in the same census tracts that are
suitable. For vehicle v in period t, the distance between its resting location and candidate location j is
calculated as the great-circle or orthodromic distance between the coordinates of the two places. If the
distance is within the maximum travel distance, a charging option is generated for vehicle v at candidate
location j in period t, i.e., (v, t, j). The distance (dv,t,j) is attached to this charging option. The amount
of charging needed to cover the round trip to candidate location j is added to the original amount of
charging. This sum serves as the duration τv,t,j in the charging option.

We solve the optimization problem with the datasets for Chicago 2007 and Seattle 2006. Among all
the failed vehicles, we focus on those that can complete their tours with just 1 additional hypothetical
charging. In the Chicago data, there are 376 such vehicles, 396 candidate locations and 7544 charging
options. In Seattle data, there are 101 such vehicles, 197 candidate locations and 933 charging options.
We implement the model in AMPL and solve it to optimality with the CPLEX solver. Figure 4 shows the
solution for Chicago with p = 50; each blue paddle corresponds to a charging station opened. The red
lines denote the trips between the vehicle resting places and the charging stations. Figure 4 also shows
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Figure 4: Left: The solution for Chicago with p = 50. Right: Results of the numerical experiments for
Chicago and Seattle. (mean: average distance, max: maximum distance, zd: zero-distance)

the optimization results and particularly how the results change when we change the number of charging
stations opened. Both the average and maximum distance decrease as p is increased. In parallel, the
percentage of the vehicles that can get recharged on the spot increases as shown by the ‘zero-distance’
curve. Even though we only run the optimization on the failed vehicles from the travel database, we can
scale up the solutions when more data become available.

Discussion and Conclusions
Range anxiety is perceived to be a major road block to large scale EV adoption Wiederer and Philip
(2010). In this paper, we study how well EVs can support the driving patterns of vehicle owners. More-
over, we propose a methodology to optimize the charging infrastructure needed in a metropolitan area.
We implemented our approach for Chicago and Seattle by using the travel surveys from MTSA.

The statistical analysis of the datasets we have created from the survey results shows that average
distance traveled per day is 29 and 26 miles in Chicago and Seattle, respectively. Almost 90% (94%)
of the vehicles in Chicago (Seattle) drive less than 60 miles per day. These figures indicate that a high
percentage of vehicles travel much less distance than the range of some mass produced EVs like Nissan
Leaf with a 73 mile EPA rated range. Nevertheless, these statistics shed some light to the question of
whether drivers would be able to make their trips with today’s EVs.

Next, we developed a user charging model and implemented it to see what fraction of the vehicles
can make their trips without being stranded. Assuming that all vehicles were Nissan Leaf, we created a
stress test where vehicles were restricted to charge only at home with level II AC chargers. Remarkably,
we found that 94% and 97% of the vehicles were able to complete their trips in Chicago and Seattle,
respectively. This may be an indication that the range anxiety may not be well-founded for the majority
of vehicle drivers since they should be able to sustain their driving patterns with the current EV technology
in the marketplace.

Finally, we determined charging station locations for both cities via a MIP model that we have de-
veloped. Its main input is the vehicles that fail to complete their trips, which are determined by the user
charging model. The charging station locations are chosen from a set of candidate locations such that the
total distance traveled by these “failed vehicles” to the selected charging stations is minimized. Driving
to a charging station is considered as a measure of inconvenience for a vehicle driver. The results show
that as the number of charging stations are increased, mean and maximum inconvenience experienced by
the vehicles drop rapidly. For example, if 100 (50) stations each having 10 level II chargers are opened in
Chicago (Seattle) Metropolitan Area, the maximum and mean inconvenience are 4.3 (1.6) and 0.7 (0.3)
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miles, respectively.
There are interesting directions for future research. One is to analyze the impact of EV charging on

the power grid by geography and time of the day. Another topic of interest is to analyze in detail the
output of the user charging model for the home charging scenario to look for common characteristics of
failed vehicles.
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