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Abstract

We present a two-stage stochastic optimization model to locate pre-positioned materials for
disaster relief in Brazil. Due to uncertainty both of disaster severity and media influence, they are
represented as scenarios. Results show that the stochastic model generates more robust solutions,
particularly when demand cannot be completely fulfilled.
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Introduction

The increase in the number of people affected by natural (hurricanes, floods, earthquakes,
tsunamis) and anthropogenic disasters (terrorist attack, technological or nuclear accident) has
required major efforts of relief organizations and emergency operation teams.

Several recent events have demonstrated the vulnerability of societies, such as the
tsunami and the earthquake in the Indian Ocean in 2004 and Japan in 2011, hurricanes in the
Caribbean, earthquakes in Pakistan in 2005, China in 2008, in Haiti and Chile in 2010, and in
New Zealand in 2011, in Brazil, floods occurred in the Itajai valley in 2008, and S&o Luiz do
Paraitinga in early 2011, in addition to catastrophic landslides in Rio de Janeiro in 2011.

Forecasts estimate that over the next 50 years, natural and man-made disasters will
increase fivefold in number and severity (Thomas and Kopczak, 2005). There are also
predictions of increased frequency of storms in southeastern Brazil as a result of global warming
(FAPESP, 2011), which makes preventive measures necessary, including the pre-positioning of
relief supplies.

Relief supplies are basic elements that affected people have access to food and hygiene
products whereby in the first moments after the disaster. The agility and readiness in the
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distribution of these items are necessary, especially in the first 72 hours after the event, so that
rescue teams begin the activities and the victims can thus stabilize their lives. Also included are
materials required for relief teams (response) to act immediately after the event.

The importance of pre-positioning relief supplies was demonstrated when Hurricane
Katrina devastated New Orleans in 2005. The lack of stored materials and the delay in arrival of
these supplies hampered further relief to the victims. Problems with legislation and difficulties in
defining responsibilities and authority (federal x state government) caused slow response
(Holguin-Veras et al., 2007).

In the network configuration, the strategy for locating, along the humanitarian logistics
supply chain, is characteristically relevant to the response time of a disaster (Balcik and Beamon,
2008). Facility location decisions affect the performance of the emergency relief operations in
disaster, since the number, location of distribution centers and the amount of supply reliefs
therein directly affect the response time and costs observed along the supply chain (Barbosa et
al., 2010).

This paper proposes a mathematical model to support decisions of locating relief supplies
facilities. An application in Brazil (S&o Paulo State) illustrates the effectiveness of the proposed
approach. Through a two-stage stochastic optimization model (Dantzig, 1955), sites are
evaluated for installing distribution centers of these materials. This optimization process results
in proposing locations that minimize the operational total cost through opening or not relief
supply depots considering opening costs, and penalties for unmet demand. Uncertainty is
introduced through demand (defined by the disaster severity and magnitude and media coverage)
and accessibility ruptures in some areas (which may lead to inaccessible areas).

Literature review

Location of humanitarian facilities using Stochastic Optimization

Chang et al. (2007) use stochastic optimization to determine the location of warehouses for
materials inventory, allocation and distribution of resources for rescue in cases of urban floods.
Due to uncertainty, the flood problem is formulated as a two-stage stochastic programming
model where the first stage minimizes the distances and the second stage performs the allocation
of inventory.

Rawls and Turnquist (2010) present a two-stage stochastic model for facility location
considering various scenarios that may occur in a disaster, assigning each uncertainty in demand
and penalty for unmet demand. Due to the complexity of the problem Lagrangian L-shaped
heuristic was used for the solution.

Rawls and Turnquist (2011) used constraints of quality of service and average distance of
deposits up to demand nodes, performing an application in the South of the United States. Later,
Rawls and Turnquist (2012) adapted the model for dynamic allocation (72 hours in advance) for
short-term demands, which ensured meeting 100% customer service needs. The penalties for
unmet demand in the papers of Rawls and Turnquist range from 10 to 50 times the value of the
product. These valued showed that for a given problem situation, the change in value of penalties
affects the amount of deposits opened, as well as the total cost, indicating that the subjectivity of
this value affects the problem solution.

Noyan (2012) incorporated the risk measurement model, also using two-stage stochastic
programming by introducing the concepts of expected value of perfect information (EVPI) and
the value of stochastic solution (VSS) in the model structure. The value of the penalty was



established as 10 times (in some cases 5 times) the value of the product. Benders decomposition
was used for the model solution. The results showed the importance of the risk allocation in
locating humanitarian facilities.

Mete and Zabinsky (2010) evaluated the location of medical supply warehouses and
inventory levels required for each medical source (first-stage decision) and delivery requirements
of supplies through a second stage vehicle routing, which disaggregates the strategic information
in operational planning. The model captures specific information to each disaster and its possible
effects through the use of scenarios evaluating preparation, risk and uncertainty of the event.

Salmerdn and Apte (2010) propose a two-stage stochastic model in which the decision of
the first stage refers to the strategy of locating supply relief facilities and the second stage refers
to performing activities of transportation necessary to serve the population. The objective
function minimizes the number of deaths and the scenarios set are the uncertainties about the
location and severity of the event.

Bozorgi-Amiri et al. (2011) developed a robust stochastic multiobjective programming
for logistics in emergency relief environment under uncertainty. In their approach, not only
demand, but also the costs of supplies, the acquisition process and transport are considered as
uncertain parameters, there is also the possibility of a disruption of one of the deposits. The
objective function minimizes the total cost and penalizes the unmet demand.

Murali et al. (2012) consider a problem of locating capacitated facilities to determine
points where medicines against a hypothetical anthrax attack in Los Angeles would be delivered
to the population. A special case is formulated as a maximum coverage model and decides the
locations facilities would be open, and the supply quantity assigned to each location, considering
uncertainty in demand. The results compare solutions using heuristics location-allocation and
simulated annealing metaheuristic. For a quantity of 40 facilities to be opened, the location-
allocation heuristic performed (89.66%) better regarding coverage compared to simulated
annealing (82.45%).

A bi-objective model with stochastic demand was formulated by Tricoire et al. (2012).
The objectives are given by (i) costs of opening distribution centers and distribution to the
demand points and (ii) the unmet demand. To solve the integer programming problem, a branch
and cut heuristic was used. Real data application in Senegal showed the viability of the approach.

Zhang et al. (2012) approach the issue of secondary disasters that occur after a major
natural disaster. Examples of these disasters may be cited as the events of T6hoku, Japan, in
2011, where a nuclear accident occurred after a disaster of seismic origin. Stochastic demands
for the first and second disaster were addressed in an individualized manner with different
probabilities for each case. The objective function minimizes the rescue costs.

Nolz et al. (2011) formulated a multiobjective optimization problem in the design of a
logistics system to ensure the adequate distribution of emergency assistance after natural
disasters, when damage to infrastructure can interrupt the delivery of humanitarian aid. The
problem is formulated encompassing three objective functions and solved using a genetic
algorithm. The first objective function minimizes the risk measure; the second objective function
minimizes the sum of the distances between all the inhabitants and their nearest service stations;
and the third objective function minimizes the total travel time.

Comparing the stochastic solution
Noyan (2012) highlights that the EVPI - Expected Value of Perfect Information and the
VSS - Value of the Stochastic Solution (Birge and Louveaux, 1997) are the two best-known



performance measures of stochastic solution, however, not all cited papers use these measures to
evaluate the stochastic solution. Table 1 shows how these evaluation measures are approached in
the humanitarian logistics literature.

Table 1 - Performance evaluation of stochastic models

Author

Solution performance evaluation

Chang et al. (2007)

Compare the costs of the stochastic, deterministic and current (mean
and standard deviation) solution. Difference between stochastic and
deterministic = 0.647%.

Rawls and Turnquist
(2012)

Does not address the performance of the solution. The solution was
complemented by Noyan (2012),

Mete and Zabinsky
(2010)

Used the deterministic and the stochastic solution, without establishing
a comparison.

Salmeron and Apte
(2010)

EVPI between 24% and 25% of the wait-and-see solution, mean VSS
between scenarios = 47% of wait-and-see. In the best-case scenario
VSS= 256%.

Bozorgi-Amiri et al.
(2011)

Compare deterministic solutions with stochastic solution - average
gain = 3.8%.

Murali et al. (2012)

Focus on the solution methodology.

Tricoire et al. (2012)

Does not address the performance of the solution.

Zhang et al. (2012)

Focus on algorithm, 26.4% gain over time.

Noyan (2012)

EVPI 54.05% to 58.42%, VSS 0.84% to 5.41% of wait-and-see
solution.

Nolz et al. (2011)

Performs a sensitivity analysis on the basis of the change in risk.

The mathematical model

The goal of the model proposed in this paper is the establishment of local installation of
one or more permanent distribution centers for storage of relief supplies aimed at aiding the
victims of natural disasters that may occur in a region. The objective function minimizes the total
cost of attendance, composed of the costs of opening the warehouse, transportation and penalties
for unmet demand. Constraints can be grouped as capacity (storage and transport), available
materials (inventory, donations, and purchases) and minimum level service (minimum met

demand).

The problem is modeled as two-stage stochastic optimization model and is based on
papers presented by Mete and Zabinsky (2010) and Rawls and Turnquist (2011). Figure 1
illustrates the structure of the model:
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Figure 1 - Model structure

Sets

I: candidate distribution centers (i € I)
K: relief supplies (k € K)

J: demand points (j € J)

C: scenarios (c € C)

First stage decision variables:
xi: 1 if distribution center i is opened, 0 otherwise
Sik. average inventory level of supply relief k at distribution center i (kg)

Second stage decision variables:

tf,: amount of k to transport from distribution center i to the point of demand j, under scenario ¢
(kg) o _

% unmet demand of k, at point j under scenario ¢ (kg)

cof, :amount of k purchased, allocated in distribution center i, under scenario ¢ (kg)
co_auxy:auxiliary binary variable to make purchases only if k is necessary

Parameters:

Scenario non-dependent:

Gi: annual cost of installation and operation of distribution center i ($)
Ex: amount available of supply k (kg)

Lik: maximum storage capacity of k in distribution center i (kg)

NEix: minimum annual inventory of k in distribution center i (kg)
QDpax: maximum number of distribution centers to be opened

QDmin: minimum number of distribution centers to be opened

FV, : weight x volume conversion factor (m® / kg)



M : large number for making purchases of supplies k only if necessary

Scenario dependent:
CT;: transportation cost from distribution center i to demand point j under scenario ¢ ($/ kg)

W, penalty per unit of k not supplied to demand point j under scenario ¢ ($ / kg)

DN{,: amount of donations of k received in distribution center i under scenario ¢ (kg)

D§,.: demand of k in demand point j under scenario ¢ (kg)

Af: binary parameter regarding the accessibility of distribution center i (1 - accessible, 0 not
accessible) under scenario ¢

CPS: transportation capacity (by weight) from distribution center i to demand point j under
scenario ¢

CV5: transportation capacity (by volume) from distribution center i to demand point j under
scenario ¢ (m°)

DMING,: minimum demand of k to be supplied at demand point j, under scenario ¢ (kg)

COT,S : contractual limit established for purchases of k, under scenario c (kg)

First stage objective function:
Minimize the [(operating cost of distribution centers) + (expected value of the solution of the
second stage function)]

min Z G, x,+E[Q(x, s c)]

1)

First stage constraints:
Constraint (2) establishes that, for an item k, the amount stored at every distribution center can
not exceed the maximum amount available.
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Constraint (3) limits the inventory level by the capacity of distribution center i.

(2)
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Constraint (4) limits the minimum inventory of the item k to open a distribution center i.
NE, x,<s, ¥V i€LLke€K %)

Constraint (5) and (6) defines the maximum and minimum number of distribution center to be
opened.
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Second stage objective function:
Minimize [(transportation cost under scenario ¢ + penalty for unmet demand under scenario c)]
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Second stage constraints:
Constraint (8) ensures that the relief supply k to be transported from i to demand point j is
available at i

Ztﬁ,k_ s +DNS, + cofV i€eLkEK ceC ()
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Constraint (9) calculates the unmet demand of k in j under scenario ¢
}i:D}i—Z”kﬂcH JELKEK,cEC (9)

Constraint (10) ensures that the relief supply k to be transported from i to demand point j is at the
distribution center opened by Xx;

L, x, zz fx A ¥V I€LkEKcEC (10)
Constraint (11) ensures the transport capacity by weight of supply k
tiw S CPG Y i€LjEJ,cEC (11)

i
Constraint (12) ensures the transport capacity by volume of supply k
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Constraint (13) ensures that a minimum demand of k at the demand point j is met.

Z fx AY=DMINS, ¥ jeEJ k€K, ceC (13)

i

Purchases:
Constraint (14) establishes a condition for purchasing relief supplies k: co_aux = 0 if Demand -
Inventory — Donations > 0

(l—coauxk:]M:?ZDﬁ{ Z ZDka‘?‘kEKcEC (14)

Constraint (15) deflnes when no purchase is requested: co_aux = 1 if Inventory + Donations —
Demand >0

coaukaPZSik-l-ZDka ZD;,{‘?‘ keK,ceC (15)

Constraint (16) deflnes purchase of rellef supply k only if co_aux =0
cof, =(1— co_auxj)M ¥V i€lLkeK,ceC (16)

Constraint (17) ensures that the purchase of supplies k is allocated to the distribution center
opened by X;

COTix, = cof, V iELkeEK,ceC 17)



Constraint (18) ensures total purchase of supply k allocated to each distribution center i does not
exceed the contractual total amount under scenario c.

COT¢ = Zcofk ¥ kEKcEC (18)

i
Constraint (19) ensures that the purchase of supplies k is performed only after the consumption
of inventory and the donation received in i.
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Constraint (20) and (21) defines non-negativity and binary variables, respectively.

St oo =0 ¥V (€l jekeK,ceCl (20)
Binary
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Case study

The proposed optimization model is applied to a case study in the Sao Paulo State
(Brazil) to evaluate the techniques used and the results. The region was chosen because of the
historical data and geographic information available, and mainly because it is a region prone to
natural disasters, as in recent events in the cities of Queluz (2000) and S&o Luiz do Paraitinga
(2010).

Five local candidates to distribution center location are considered: Sdo Paulo, Cacapava,
S&o José dos Campos, Taubate, and Tremembé. These sites were chosen because they already
have Civil Defense operations and are situated in locations with a history of few accidents, thus
less likely to rupture.

The scenarios:

The scenarios were established according to the severity and magnitude of disasters
(medium, large, and catastrophe). In addition, the disclosure in the media was considered at three
levels (low, medium, or large). The media plays a key role in a disaster, especially in mobilizing
volunteers and donations (Arnold, 2011). Another consideration is possible disruptions that may
affect the accessibility of supply channels to affected sites, changing costs of transport and
supply. Table 2 shows the probability of scenarios

Table 2 - Probability of scenarios

Medium Large Catastrophe
Low dissemination by media 0.2 0.02 0.01
High dissemination by media 0.3 0.1 0.3
High dissemination by media 0 0.01 0.06
and ruptures




Results and discussion

The model was implemented using the software AIMMS 3.11, CPLEX solver 12.3 in
CPU Intel Core i3® 2310M 2.1 GHz, 4 Gb RAM, 64-bit operational system Windows7 ®.

Table 3 shows the results of deterministic and stochastic models. The deterministic
solution was obtained using the weighted average of the parameters to a 5-year horizon and a
value of penalty equal to 5 times the value of the freight. The cost of penalties is the largest
component of the total cost. This finding is due to the lack of materials. Even in the deterministic
model, where the reduction of unmet demand occurs due to the absence of random parameters
(uncertainty), this cost is high which means that the current Civil Defense operation are not
adapted even if to the average disaster level. In the stochastic solution, as well as in deterministic
solution, the values obtained show that the penalties strongly influence the results due to unmet
demand.

Table 3 — Results of the deterministic and stochastic models

Deterministic (R$)

Stochastic (R$)

ggﬁ%iifsojgen 63,000.00 18,000.00
Transportation costs 30,664.66 25,065.72
Penalties costs 200,381.53 331,532.33
Total cost 294,046.19 374,598.06
Distribution centers opened [ S&o Paulo Séo Paulo

Taubaté

Could also be observed, by the results, that only in medium disaster could the demand be
met, although donations and purchased materials, totaling 40.4% (by weight) of total demand,
were not fully used due to capacity constraints of deposits. Another significant cost is fixed cost
for opening deposits. The lowest relative cost is the cost of transportation.

Comparison of deterministic and stochastic solutions

The EVPI and VSS values were calculated and compared with the results by Noyan
54.05% to 58.42 for EVPI and 0.84% to 5.41% for VSS and the results achieved by Salmerdn
and Apte (2010) who obtained EVPI between 24% and 25% and VSS s between 47%
(percentage values relative to wait-and-see solution). Considering that smaller EVPI indicates a
better solution and higher VSS indicates a better solution, and that the VVSS value depends on the
value of the penalties, the model shows good results for EVPI, despite requiring a refinement of
of the criteria adopted for values of penalties, which would provide an improvement in the value
of VSS.

Conclusions

This paper presented a problem of prepositioning of disaster relief supply decisions in
Brazil through stochastic modeling. The results show that the existing infrastructure in Sdo Paulo
state is not able to support the demand of a very large catastrophic disaster. The stochastic
modeling shows that the main component is the penalty costs, consequently, the outcome of the
model is extremely sensitive to this value. The results suggest that only one distribution center is
used to supply relief supplies. The distribution center currently existing in the city of Sdo Paulo



would be used for this purpose, however, in case of disruptions in access to the deposit, another
site is needed.
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