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Abstract

Throughput optimization is an important problem facing manufacturing industry today due
to intense global competition. Automated robotic cell are used to efficiently produce parts to
ease this competition. In view of maximizing throughput, practitioners uses a class of cycles
known as 1-unit cycles in which the cell returns to the same state after the production of
each unit. The complexity of throughput optimization in the class of 1-unit cycles in single
and dual-gripper robotic cells is the main focus of this paper. We provide some insights for
throughput optimization using two-unit cycles.
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1 Introduction

A robotic cell consists of a set of m processing stages, M = {M1,M2, . . . ,Mm}, an input

buffer I that holds unprocessed parts, an output buffer O for completed parts, and a robot

that performs all material-handling functions – loading parts onto the machines, unloading

parts from the machines, and transferring parts from one stage to the next. Figure 1 shows

a four-stage cell that has one machine per stage and a dual-gripper robot. If a part that

has completed processing on a machine can remain on that machine only for a specified

time-window. Such cells are referred to as interval cells. For no-wait cells this time window

is zero. In free pick-up cells, there is no time limit on the residence time of a part after it

has completed processing on a machine. Each machine can hold only one part, and the cell

has no buffers for intermediate storage. Therefore, all parts must be either in I, O, on one

of the machines, or on the robot’s grippers. We study the problem of scheduling operations

in a single and dual-gripper robotic cells processing identical parts in order to maximize the

throughput.
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Figure 1: A Four-Stage Dual-Gripper Robot Cell. The input and output buffers are also denoted
as machines M0 & Mm+1.

2 Literature Review

We use the classification scheme for robotic cell scheduling problems described in Dawande

et al. (2007), which is an extension of that of Graham et al. (1979) for classical scheduling

problems. The scheme employs a three-field descriptor ψ1|ψ2|ψ3, where ψ1 specifies the

machine environment, ψ2 describes the part characteristics and/or restrictive requirements,

and ψ3 defines the objective function to be minimized. For example RF 2,◦
m |(interval,A,

cyclic-1)|Ct denote the problem of finding an optimal 1-unit cycle in interval dual gripper

cell with circular layout and additive-travel-time. A detailed discussion of various robotic

cell problems can be found in Dawande et al (2007). Other reviews of the literature on

throughput optimization in robotic cells include Crama et al. (2000), Dawande et al. (2005b),

and Brauner (2008).

3 Notation and Definition

In this section, we will provide the notation and definitions used in the paper. We will

begin by providing the definition to T (S). T (S) is the cycle time of a robotic cell repeatedly

executing a k-unit cycle, S, when the cell operates under a steady state. Hence, T (S)
k

, is the

average time required to produce one unit. Note that, minimizing per unit cycle time is

equivalent to maximizing throughput.

[pi, qi]: the processing time window of a part on machine Mi. A part must be processed

for pi time at Mi and must be removed from machine Mi within (qi − pi) time units after

its completion of processing at Mi, where pi ≤ qi,∀i. For no-wait cells pi = qi,∀i. For
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free-pickup cells qi = ∞,∀i.
δ: the time taken by a robot to travel between two adjacent machines.

ϵ: the time taken by the robot to load (unload) a part onto (from) any machine.

θ: the time from the moment one gripper has unloaded a machine until the moment the

second gripper is positioned to load the same machine.

M ℓ
i /M

u
i : the robot activity load/unload part onto machine Mi, i = 0, 1, 2, . . .m+ 1.

For 1-unit robot move sequences in a dual-gripper cell, we need to consider four distinct

ways in which a robot can load and unload a machine. We refer to these as usages.

U1: the robot loads a part P onto a machine Mk, waits at the machine during the entire

processing of P , and then unloads P . During this usage, the robot’s second gripper is either

empty or occupied by a part to be processed at a machine other than Mk.

U2: the robot arrives with a part P and waits at the machine for the previously loaded part

P ′ to be completed, unloads P ′ from the machine, rotates the grippers, loads P onto the

machine, and moves onto the next machine. U3: the robot loads a part P onto a machine

Mk, leaves Mk to perform other activities at other machines, and then returns to Mk to

unload P . During this usage the robot’s second gripper is either empty or occupied by a

part to be processed at a machine other than Mk.

U4: the robot arrives with a part P at Mk (to be processed on Mk) and waits at Mk for

the previously loaded part P ′ to be completed, unloads P ′ from Mk, moves onto the next

machine, performs other activities, and returns to Mk to load the part P onto it.

4 Two Extreme Cases of Interval Cells: Free-Pickup Cells and
No-Wait Cells

The free-pickup and no-wait criteria represent the two extremes of the general interval pickup

criterion. We now discuss the two criteria in detail.

4.1 Free-Pickup Cells

Finding an optimal 1-unit cycle in RF 2,◦
m |(free,A, cyclic-1)|Ct is the focus of this section. We

briefly review the results for RF 2,◦
m |(free,A, cyclic-1)|Ct.

4.1.1 An Optimal Cycle when θ ≤ δ

For free-pickup cells with the practically relevant conditions pi ≥ δ,∀i; δ ≥ θ, cycle S
′′
m =

(Mu
0 ,M

u
1 ,M

ℓ
1,M

u
2 , M

ℓ
2, . . . ,M

u
m,M

ℓ
m,M

ℓ
m+1) is optimal over 1-unit cycles (Geismar et al.
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2006). Note that in cycle S
′′
m each machine usages is U2.

We now propose the following algorithm for the problem RF 2,◦
m |(free,A,cyclic-1)|Ct with

arbitrary processing times.

Algorithm Dual-Free

Input: Data for a free-pickup cell with a dual-gripper robot.

Output: An asymptotically optimal 1-unit cycle.

If δ ≥ θ then

For j = 1 to m

If pj ≥ θ then assign Mj usage U2,

Else assign Mj usage U1.

Construct cycle S
′′
∗ by visiting machines in ascending order (0, 1, . . . ,m,m+ 1) and by

performing at each machine the action corresponding to the usage assigned above.

Output constructed cycle.

The following result which is due to Dawande et al (2010), for constant travel time robot

cell, is also valid for additive travel time robot cell with circular layout (Drobouchevitch et

al 2006). The result below is also valid for the linear layout.

Theorem 1 Algorithm Dual-Free finds an optimal cycle (S
′′
∗ ) for problem RF 2,◦

m |(free,A, cyclic-
1)|Ct when θ ≤ δ.

Proof: Dawande et al (2010).

For linear layout, if δ < θ and θ is very large, then a single-gripper 1-unit cycle is optimal

and is obtainable in polynomial time by an algorithm due to Crama and ven de Klundert

(1997a). However, for the circular layout, if δ < θ and θ is very large, then a single-gripper

1-unit cycle is shown to be binary NP-hard (Rajapakshe et al. 2011). In other words, the

problem of finding an optimal 1-unit cycle in additive-travel-time free-pickup cell with which

a single-gripper robot and circular layout (RF 1,◦
m |(free, A, cyclic-1)|Ct) is binary NP-hard.

Theorem 2 In a free-pickup cell under circular layout with a single-gripper robot, the recog-

nition version of problem RF 1,◦
m |(free,A, cyclic-1)|Ct is binary NP-Complete.

Proof: Rajapakshe et al. (2011).

The above results is true for the problem of finding an optimal 1-unit cycle in additive-

travel-time interval cell with with a dual-gripper robot and circular layout (RF 2,◦
m |(free, A, cyclic-

1)|Ct) when θ is very large.

Remark 1 The problem RF 2,◦
m |(free,A, cyclic-1)|Ct, is polynomial when θ ≤ δ and NP-hard

when θ ≥ 3δ (Rajapakshe et al., 2011). The complexity of the following problem is an open

question: RF 2,◦
m |(free,A, cyclic-1)|Ct when δ < θ < 3δ.
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4.2 No-wait Cells

Dawande et al (2010) show that for No-wait Euclidean travel time robot cell (RF 2
m|(no-

wait,E, cyclic-1)|Ct), finding an optimal 1-unit cycle is achieved in polynomial time. This

result is proven without any restriction on θ. Note that this result is also valid for constant

and additive travel time cells under both linear and circular layouts. Table 1 summarizes

the results in this paper and places them with respect to the existing literature.

Table 1: Complexity Map of the Problem of Obtaining an Optimal 1-Unit Cycle (P: Polyno-
mially Solvable, UNP-H: Unary NP-Hard, BNP-H: Binary NP-Hard).

Single-Gripper Cell Dual-Gripper Cell (θ ≤ δ)
Distance Metric ↓ Free No-Wait Interval Free No-Wait Interval

Euclidean UNP-H P UNP-H P P UNP-H
δ = min0≤i<j≤m+1{δi,j} Brauner Levner Lei and Dawande Dawande Dawande

et al. (2003) et al. (1997) Wang (1989) et al. (2010) et al. (2010) et al. (2010)

Constant P P UNP-H P P UNP-H
Dawande Levner Dawande Dawande Dawande Dawande

et al. (2002) et al. (1997) et al. (2010) et al. (2010) et al. (2010) et al. (2010)

Additive Linear P P UNP-H P P BNP-H
Crama and ven de Levner Crama and ven de Dawande Dawande Our Paper
Klundert (1997a) et al. (1997) Klundert (1997b) et al. (2010) et al. (2010)

Additive Circular BNP-H P BNP-H P P BNP-H
Rajapakshe Levner Rajapakshe Dawande Dawande Our Paper
et al. (2011) et al. (1997) et al. (2011) et al. (2010) et al. (2010)

5 Interval Cells under a Circular Layout

We now show that the problem of finding an optimal 1-unit cycle in additive-travel-time

interval cell with circular layout (RF 2,◦
m |(interval, A, cyclic-1)|Ct) is binary NP-hard even

when θ ≤ δ. We use the Partition problem for our NP-complete reduction (Garey and

Johnson 1979). Note that the result below is obtained for 1-unit cycles without usage U4 as

the part must be loaded onto the next machine as soon as it is unloaded from any machine

in interval cells. However, we relax this assumption in a later section.

Theorem 3 In an interval cell under circular layout with a dual-gripper robot, the recogni-

tion version of problem RF 2,◦
m |(interval,A, cyclic-1)|Ct with usages U1, U2, and U3, is binary

NP-Complete even when θ ≤ δ.

Proof: Given an arbitrary instance of Partition problem, we now describe a polynomial-

time construction of an instance of RF 2,◦
m |(interval, A, cyclic-1)|Ct.

The number of machines is m = 4n+ 5 with δ = 2B, θ = 0, ϵ = 0, and a constant L = 2B.

The processing time interval for Mk, k = 1, 2, is [pk, qk] = [(4n+ 7)δ + (n+ 1)L+ 2B, (4n+

7)δ + (n+ 1)L+ 2B].
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The processing time interval forM2k, k = 2, 3, . . . , 2n+2, is [p2k, q2k] = [0, 2(4n+7)δ+2(n+

1)L+ 4B].

The processing time interval for M2k+1, k = 1, 2, . . . , 2n, is [p2k+1, q2k+1] = [L+ ak, L+ ak].

The processing time interval for M4n+3 is [p4n+3, q4n+3] = [L+B,L+B] and that for M4n+5

is [p4n+5, q4n+5] = [L+B,L+B].

Decision Question (DQ): “Does there exist a 1-unit cycle πr with cycle time T (πr) ≤
[2(4n+ 7)δ + 2(n+ 1)L+ 4B] ?”

Since, a “yes” answer to DQ can be verified in polynomial time, DQ is in class NP. We show

that there exists a 1-unit cycle πr with T (πr) ≤ [2(4n + 7)δ + 2(n + 1)L + 4B] if and only

if there exist a solution to Partition. Without loss of generality, we assume that a 1-unit

cycle starts with activity M l
1.

If part: Suppose that there exists a solution to Partition. Without loss of generality,

assume that a1+a3+ · · ·+ a2n−1 = B and a2+a4+ · · ·+ a2n = B. Consider the 1-unit cycle

πr = (M l
1, ϕ1, ϕ3, . . . , ϕ2n−1, ϕ2n+1,M

l
2, ϕ2, ϕ4, . . . , ϕ2n, ϕ2n+2) where ϕk, k = 1, 2, . . . , 2n + 2,

represents the subsequence (M l
2k+1,M

l
2k+2); thus, ϕk indicates that the usage at machine

M2k+1 is U1. It is easy to verify that πr is a feasible 1-unit cycle. Also, the contribution

of each subsequence ϕk, k = 1, 2, . . . , 2n + 2, to the cycle time of πr is p2k+1 + 2δ. The

robot does not wait to unload a part at any machine except at M2k+1, k = 1, 2, . . . , 2n,

M4n+3 and M4n+5, where it performs usage U1. The robot experiences a total waiting time

of 2(n+ 1)L+ 2B +
∑2n

i=1 ai = 4B + 2(n+ 1)L. The total time for the robot travel time is

2(4n + 7)δ. Thus, the total cycle time of πr is T (πr) = [2(4n + 7)δ + 2(n + 1)L + 4B], as

required.

Only If part: Suppose there exist a cycle πr such that T (πr) ≤ [2(4n+7)δ+(2n+2)L+4B] =

TUB. Then, we identify the usages for machines Mj, j = 1, 2, . . . ,m, through a series of

claims.

Claim 1: In cycle πr, machines M2k+1, k = 1, 2 . . . , 2n+ 2, must perform usage U1.

Proof of Claim 1: The time to load and unload in usages U2 and U3 violates the assumption.

Hence the proof.

Claim 2: In cycle πr, machines M1 and M2 must have usage U3.

Proof of Claim 2: Suppose one of them, say machine M1, has usage U1 in cycle πr.

Then, the robot’s total waiting time at machines M1 and M2k+1, k = 1, 2 . . . , 2n + 2, is
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(4n+7)δ+3(n+1)L+6B. Furthermore, in a 1-unit cycle, the robot loads and unloads each

of the (4n+5) machines exactly once and visits I and O exactly once; thus, the total travel

time incurred is at least (4n+7)δ. Consequently, T (πr) ≥ 2(4n+7)δ+2(n+1)L+4B, which

violates the upper bound on the cycle time. Cycle T (πr) is, thus, infeasible. The argument

for the case when M2 has usage U1 and for the case when both M1 and M2 have usage U1 is

similar.

First we show that both M1 and M2 cannot have usage U2. Suppose both M1 and M2

have usage U2, then in 1-unit cycle the following activities must be consecutive : Mu
1 M

l
1 M

u
2

M l
2. Thus between activitiesM l

1 andM
u
1 , machinesM2k+1, k = 1, 2 . . . , 2n+2, must perform

usage U1. To perform this the robot has to travel on complete circle requiring time (4n+7)δ

and must wait 2(n+1)L+4B time at machines M2k+1, k = 1, 2 . . . , 2n+2, to perform usage

U1. This violates the time-window constraint at M1: p1 = q1 = (4n + 7)δ + (n + 1)L + 2B.

Now it is easy to see either M1 or M2 cannot have usage U2. Consequently, machines M1

and M2 must have usage U3.

As a result of above claims, we have following usages for the machines.

• Machines M1 and M2 have usage U3.

• Machines M2k+1, k = 1, . . . , 2n+ 2, have usage U1.

• Machines M2k, k = 2, . . . , 2n + 2, have one of the following usage depending form of
1-unit cycle: U1, U2, U3. Note if a machine M2k has usage U1 it can be replaced by

usage U2 and vice-versa without increasing the cycle time.

Let [M l
i ,M

u
j ] (resp., [M

l
i ,M

l
j]) refer to the elapsed time between the instant of completion

of activity M l
i and the instant of completion of activity Mu

j (resp., M l
j).

Claim 3: In the interval [M l
1,M

u
1 ] the robot performs usage U1 at exactly n + 1 machines

from the set {M2k+1 : k = 1, . . . , 2n+ 2}.
Proof of Claim 3: The processing time window for M1 is tight: p1 = q1 = (4n+7)δ+(n+

1)L + 2B. Hence, to achieve the required cycle time, the total time elapsed in the interval

[M l
2,M

l
1] is at most (4n+ 7)δ − δ + (n+ 1)L+ 2B.

Suppose the robot performs usage U1 at (n+2) (or more) machines from the set {M2k+1 :

k = 1, 2, . . . , 2n + 2} in the interval [M l
1,M

u
1 ]. Then, the robot travels at least (4n + 7)δ

time units to visit these (n + 2) machines and then return to M1 for unloading. Also, the

total full-waiting time of the robot in the interval [M l
1,M

u
1 ] is at least wf = (n+ 2)L+ α =

(n+ 1)L+ 2B + α > (n+ 1)L+ 2B where α =
∑

i∈Λ ai; Λ ⊆ A, |Λ| = n+ 2. Thus, the total
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time elapsed in the interval [M l
1,M

u
1 ] is at least (4n+7)δ+(n+1)L+2B+α, which violates

the time window constraint on M1. Consequently, the robot performs usage U1 on at most

(n+ 1) machines between the instants of completion of the activities M l
1 and Mu

1 .

Furthermore, if the robot performs usage U1 on fewer than (n + 1) machines from the

set {M2k+1 : k = 1, 2, . . . , 2n + 2}, then between the instant of completion of activity

M l
2 and that of the start of M l

1, it must perform U1 on at least (n + 2) machines in the

interval. Hence, as discussed above, the minimum time elapsed between these two instants

is (4n+7)δ+(n+1)L+2B+α > (4n+7)δ−δ+(n+1)L+2B, which violates the processing

time window of M1. The result follows.

The argument used to prove the next two claims is similar to that for Claim 3. We,

therefore, state these results without proof.

Claim 4: In the interval [M l
1,M

u
1 ], the robot cannot perform both subsequences ϕ2n+1 and

ϕ2n+2.

Claim 5: In the interval [M l
2,M

l
1], the robot cannot perform both subsequences ϕ2n+1 and

ϕ2n+2.

Claim 6: In cycle πr, the activity M l
1 must precede Mu

2 .

Proof of Claim 6: Suppose not, then, the interval [M l
2,M

u
2 ] is disjoint from the interval

[M l
1,M

u
1 ]. Since the time-window constraint is tight for both M1 and M2, the elapsed time

for each of these intervals is (4n+7)δ+(n+1)L+2B. Also, an additional time δ is required

between the completion of activitiesMu
1 andM l

2. Consequently, the total cycle time exceeds

the required upper bound in DQ. The result follows.

Claim 7: If T (πr) ≤ 2(4n+7)δ+2(n+1)L+4B, then there exists a solution to Partition.

Proof of Claim 7: Since the robot performs usage U1 exactly at n + 1 machines from

the set {M2k+1 : k = 1, 2, . . . , 2n + 2} in the interval [M l
1,M

u
1 ], the total robot activity and

waiting time in the interval (using Claims 1-4) is (4n + 7)δ + (n + 1)L + B + α, where

α =
∑

k∈Λ ak; Λ ⊆ A, |Λ| = n+ 1 (the set Λ corresponds to the machines from {M2k+1 : k =

1, 2, . . . , 2n+2} with usage U1 in [M l
1,M

u
1 ]). Also, the total robot activity and waiting time

in the interval [M l
2,M

l
1] is (using Claims 1-3 and Claims 5-6) (4n+7)δ−δ+(n+1)L+B+α

′
,

where α
′
= 2B − α. In order to meet the time window constraint of both M1 and M2, we

have α ≤ B and α
′ ≤ B. But α + α

′
= 2B. Hence there exist A1 ⊆ A α =

∑
ak∈A1

ak =

α′ =
∑

ak∈A\A1
ak = B, k = 1, . . . , 2n, and |A1| = |A\A1|. We, therefore, have a solution to

Partition. This completes the proof of Theorem 3.
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We now show that in an interval cell with a dual-gripper robot (RF 2
m|(interval,A,cyclic-

1)|Ct), the problem of finding an optimal cycle among all 1-unit cycles is NP-hard.

Theorem 4 In an interval cell under circular layout with a dual-gripper robot, the recog-

nition version of problem RF 2,◦
m |(interval,A, cyclic-1)|Ct is binary NP-Complete even when

θ ≤ δ.

Proof: The proof of Theorem 3 can easily be adopted with inclusion of usage U4.

6 Interval Cells under a Linear Layout

Note that the problem of finding an optimal 1-unit cycle in additive-travel-time free-pickup

cell with linear layout (RF 2
m|(free, A, cyclic-1)|Ct) is polynomial solvable under practically

relevant condition, θ ≤ δ. For linear layout, if δ < θ and θ is very large, then a single-gripper

1-unit cycle is optimal and is obtainable in polynomial time by an algorithm due to Crama

and ven de Klundert (1997a).

Theorem 5 In an interval cell under linear layout with a dual-gripper robot, the recognition

version of problem RF 2
m|(interval,A, cyclic-1)|Ct is binary NP-Complete even when θ ≤ δ.

Proof: Proof is similar to that of Theorem 4

7 Conclusions and Future Research Directions

A fundamental open question concerning cyclic solutions, in either a single-gripper or a

dual-gripper robotic cell with a free-pickup criterion, is that of finding an optimal k-unit

cycle, k ≥ 1. From an algorithmic point of view, for interval dual-gripper cells, we have

settled the open questions for 1-unit cycle in this paper. For a circular layout, it is unclear

whether the problem is strongly NP-hard or solvable by a pseudo-polynomial time algorithm.

Furthermore, the algorithmic analysis available for k-unit cyclic solutions is scant for k ≥ 2.

Table 2 summarizes in the existing literature for 2-unit cycles. There are still many questions

remained to be answered. The main one is whether the complexity results obtained in this

paper and in Rajapakshe (2011) for 1-unit cycles be generalized to 2-unit cycles.
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