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Abstract

Throughput optimization is an important problem facing manufacturing industry today due
to intense global competition. Automated robotic cell are used to efficiently produce parts to
ease this competition. In view of maximizing throughput, practitioners uses a class of cycles
known as 1-unit cycles in which the cell returns to the same state after the production of
each unit. The complexity of throughput optimization in the class of 1-unit cycles in single
and dual-gripper robotic cells is the main focus of this paper. We provide some insights for
throughput optimization using two-unit cycles.
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1 Introduction

A robotic cell consists of a set of m processing stages, M = {M;, Ms, ..., M,}, an input
buffer I that holds unprocessed parts, an output buffer O for completed parts, and a robot
that performs all material-handling functions — loading parts onto the machines, unloading
parts from the machines, and transferring parts from one stage to the next. Figure 1 shows
a four-stage cell that has one machine per stage and a dual-gripper robot. If a part that
has completed processing on a machine can remain on that machine only for a specified
time-window. Such cells are referred to as interval cells. For no-wait cells this time window
is zero. In free pick-up cells, there is no time limit on the residence time of a part after it
has completed processing on a machine. Each machine can hold only one part, and the cell
has no buffers for intermediate storage. Therefore, all parts must be either in I, O, on one
of the machines, or on the robot’s grippers. We study the problem of scheduling operations
in a single and dual-gripper robotic cells processing identical parts in order to maximize the

throughput.
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Figure 1: A Four-Stage Dual-Gripper Robot Cell. The input and output buffers are also denoted
as machines My & Mp,11.

2 Literature Review

We use the classification scheme for robotic cell scheduling problems described in Dawande
et al. (2007), which is an extension of that of Graham et al. (1979) for classical scheduling
problems. The scheme employs a three-field descriptor ;|¢s|13, where 11 specifies the
machine environment, 1)y describes the part characteristics and/or restrictive requirements,
and 3 defines the objective function to be minimized. For example REZ°|(interval,A,
cyclic-1)|Cy denote the problem of finding an optimal 1-unit cycle in interval dual gripper
cell with circular layout and additive-travel-time. A detailed discussion of various robotic
cell problems can be found in Dawande et al (2007). Other reviews of the literature on
throughput optimization in robotic cells include Crama et al. (2000), Dawande et al. (2005b),
and Brauner (2008).

3 Notation and Definition

In this section, we will provide the notation and definitions used in the paper. We will
begin by providing the definition to T'(.S). T'(S) is the cycle time of a robotic cell repeatedly
executing a k-unit cycle, S, when the cell operates under a steady state. Hence, @, is the
average time required to produce one unit. Note that, minimizing per unit cycle time is
equivalent to maximizing throughput.

[pi, ¢i]: the processing time window of a part on machine M;. A part must be processed
for p; time at M; and must be removed from machine M; within (¢; — p;) time units after

its completion of processing at M;, where p; < ¢;,Vi. For no-wait cells p; = ¢;,Vi. For



free-pickup cells ¢; = oo, V1.
0: the time taken by a robot to travel between two adjacent machines.
e: the time taken by the robot to load (unload) a part onto (from) any machine.
0: the time from the moment one gripper has unloaded a machine until the moment the
second gripper is positioned to load the same machine.
M} /M?: the robot activity load/unload part onto machine M;, i =0,1,2,...m + 1.

For 1-unit robot move sequences in a dual-gripper cell, we need to consider four distinct
ways in which a robot can load and unload a machine. We refer to these as usages.
U;: the robot loads a part P onto a machine My, waits at the machine during the entire
processing of P, and then unloads P. During this usage, the robot’s second gripper is either
empty or occupied by a part to be processed at a machine other than M.
Us: the robot arrives with a part P and waits at the machine for the previously loaded part
P’ to be completed, unloads P’ from the machine, rotates the grippers, loads P onto the
machine, and moves onto the next machine. Us: the robot loads a part P onto a machine
My, leaves My to perform other activities at other machines, and then returns to M} to
unload P. During this usage the robot’s second gripper is either empty or occupied by a
part to be processed at a machine other than M.
Uy: the robot arrives with a part P at M (to be processed on Mj) and waits at My for
the previously loaded part P’ to be completed, unloads P’ from M), moves onto the next

machine, performs other activities, and returns to M} to load the part P onto it.

4 Two Extreme Cases of Interval Cells: Free-Pickup Cells and
No-Wait Cells

The free-pickup and no-wait criteria represent the two extremes of the general interval pickup

criterion. We now discuss the two criteria in detail.

4.1 Free-Pickup Cells

Finding an optimal 1-unit cycle in RF2°|(free, A, cyclic-1)|C; is the focus of this section. We
briefly review the results for RF2°|(free, A, cyclic-1)|C;.

4.1.1 An Optimal Cycle when 0 < §

For free-pickup cells with the practically relevant conditions p; > 4,Vi; § > 6, cycle S, =
(MY, My, M, My, Mg, .o, MY, ME MY L) is optimal over 1-unit cycles (Geismar et al.



2006). Note that in cycle S, each machine usages is U.
We now propose the following algorithm for the problem RF?2°|(free,A,cyclic-1)|Cy with

arbitrary processing times.

Algorithm Dual-Free
Input: Data for a free-pickup cell with a dual-gripper robot.

Output: An asymptotically optimal 1-unit cycle.
If 6 > 0 then
For j=1tom
If p; > 0 then assign M; usage Uz,
Else assign M; usage U1.
Construct cycle S: by visiting machines in ascending order (0,1,...,m,m + 1) and by
performing at each machine the action corresponding to the usage assigned above.
Output constructed cycle.
The following result which is due to Dawande et al (2010), for constant travel time robot
cell, is also valid for additive travel time robot cell with circular layout (Drobouchevitch et

al 2006). The result below is also valid for the linear layout.

Theorem 1 Algorithm Dual-Free finds an optimal cycle (S. ) for problem RE2°|(free,A, cyclic-
1)|Cy when 6 < 6.

Proof: Dawande et al (2010).

For linear layout, if § < 6 and 0 is very large, then a single-gripper 1-unit cycle is optimal
and is obtainable in polynomial time by an algorithm due to Crama and ven de Klundert
(1997a). However, for the circular layout, if § < § and 6 is very large, then a single-gripper
1-unit cycle is shown to be binary NP-hard (Rajapakshe et al. 2011). In other words, the
problem of finding an optimal 1-unit cycle in additive-travel-time free-pickup cell with which

(free, A, cyclic-1)|Ct) is binary NP-hard.

a single-gripper robot and circular layout (REL°

Theorem 2 In a free-pickup cell under circular layout with a single-gripper robot, the recog-
nition version of problem RF°|(free,A, cyclic-1)|Cy is binary NP-Complete.
Proof: Rajapakshe et al. (2011). "

The above results is true for the problem of finding an optimal 1-unit cycle in additive-

travel-time interval cell with with a dual-gripper robot and circular layout (RF%°

(free, A, cyclic-
1)|C;) when 6 is very large.
Remark 1 The problem REZ°|(free,A, cyclic-1)|C;, is polynomial when 0 < § and NP-hard

when 0 > 35 (Rajapakshe et al., 2011). The complexity of the following problem is an open
question: RE%°|(free, A, cyclic-1)|Cy when § < 6 < 34.



4.2 No-wait Cells

Dawande et al (2010) show that for No-wait Euclidean travel time robot cell (RF?2|(no-
wait, B, cyclic-1)|Cy), finding an optimal 1-unit cycle is achieved in polynomial time. This
result is proven without any restriction on 6. Note that this result is also valid for constant
and additive travel time cells under both linear and circular layouts. Table 1 summarizes

the results in this paper and places them with respect to the existing literature.

Table 1: Complexity Map of the Problem of Obtaining an Optimal 1-Unit Cycle (P: Polyno-
mially Solvable, UNP-H: Unary NP-Hard, BNP-H: Binary NP-Hard).

Single-Gripper Cell Dual-Gripper Cell (6 < §)
Distance Metric | Free [ No-Wait ] Interval Free [ No-Wait |  Interval
Euclidean UNP-H P UNP-H P P UNP-H
0 = ming<j<j<m+1{d,5} Brauner Levner Lei and Dawande Dawande Dawande
et al. (2003) et al. (1997) Wang (1989) et al. (2010) | et al. (2010) | et al. (2010)
Constant P P UNP-H P P UNP-H
Dawande Levner Dawande Dawande Dawande Dawande
et al. (2002) et al. (1997) et al. (2010) et al. (2010) | et al. (2010) | et al. (2010)
Additive Linear P P UNP-H P P BNP-H
Crama and ven de Levner Crama and ven de Dawande Dawande Our Paper
Klundert (1997a) | et al. (1997) | Klundert (1997b) et al. (2010) | et al. (2010)
Additive Circular BNP-H P BNP-H P P BNP-H
Rajapakshe Levner Rajapakshe Dawande Dawande Our Paper
et al. (2011) et al. (1997) et al. (2011) et al. (2010) | et al. (2010)

5 Interval Cells under a Circular Layout

We now show that the problem of finding an optimal 1-unit cycle in additive-travel-time

interval cell with circular layout (RE?Z%°|(interval, A, cyclic-1)|C}) is binary NP-hard even
when § < §. We use the Partition problem for our NP-complete reduction (Garey and
Johnson 1979). Note that the result below is obtained for 1-unit cycles without usage U, as
the part must be loaded onto the next machine as soon as it is unloaded from any machine

in interval cells. However, we relax this assumption in a later section.

Theorem 3 In an interval cell under circular layout with a dual-gripper robot, the recogni-

tion version of problem RE%°|(interval, A, cyclic-1)|Cy with usages Uy, Us, and Us, is binary

NP-Complete even when 0 < 4.

Proof: Given an arbitrary instance of PARTITION problem, we now describe a polynomial-
time construction of an instance of RF>°|(interval, A, cyclic-1)|C;.

The number of machines is m = 4n + 5 with 6 = 2B, # =0, e = 0, and a constant L = 2B.
The processing time interval for My, k = 1,2, is [pg, qx] = [(4n+7)0 + (n+ 1)L + 2B, (4n +
76+ (n+ 1)L+ 2B|.



The processing time interval for Moy, k = 2,3,...,2n+2, 18 [pog, gox] = [0, 2(dn+T7)5 +2(n+
1)L + 4B].

The processing time interval for Moy 1,k = 1,2,...,2n, S [pog11, Gorr1] = [L + ag, L + ay).
The processing time interval for My, 3 18 [Pant3, Qanss] = [L + B, L+ B] and that for My, 5
is [pan+5, qants) = [L + B, L+ BJ.

Decision Question (DQ): “Does there exist a l-unit cycle m, with cycle time T'(w,) <

2(4n+T7)0 +2(n+ 1)L +4B] ?”

Since, a “yes” answer to DQ can be verified in polynomial time, DQ is in class NP. We show
that there exists a 1-unit cycle 7, with T'(w,.) < [2(4n + 7)d + 2(n + 1)L + 4B] if and only
if there exist a solution to PARTITION. Without loss of generality, we assume that a 1-unit

cycle starts with activity M.

If part: Suppose that there exists a solution to PARTITION. Without loss of generality,
assume that a1 +as+---+ag,—1 = B and as + a4+ - - -+ as, = B. Consider the 1-unit cycle
T = (M, ¢1, 03, ..., don-1, Gont1, Mb, b2, a, . .., an, Pany2) where ¢y k = 1,2,...,2n + 2,
represents the subsequence (Mg, ,, M}, ,); thus, ¢, indicates that the usage at machine
Mogyq is Uy. Tt is easy to verify that m, is a feasible 1-unit cycle. Also, the contribution
of each subsequence ¢,k = 1,2,...,2n + 2, to the cycle time of 7, is pori1 + 20. The
robot does not wait to unload a part at any machine except at Moy 1,k = 1,2,...,2n,
My, 3 and My, 5, where it performs usage U;. The robot experiences a total waiting time
of 2(n + 1)L + 2B + 327" a; = 4B 4 2(n + 1)L. The total time for the robot travel time is
2(4n + 7)0. Thus, the total cycle time of 7, is T'(w,) = [2(4n 4+ 7)6 + 2(n + 1)L + 4B], as

required. O

Only If part: Suppose there exist a cycle 7, such that T'(7,) < [2(4n+7)0+ (2n+2)L+4B] =

Typ. Then, we identify the usages for machines M;,j = 1,2,...,m, through a series of
claims.
Claim 1: In cycle m., machines Moy 1,k = 1,2...,2n+ 2, must perform usage U, .

Proof of Claim 1: The time to load and unload in usages Us and U3 violates the assumption.
Hence the proof. 0O
Claim 2: In cycle m,., machines My and My must have usage Us.

Proof of Claim 2: Suppose one of them, say machine M;, has usage U, in cycle m,.

Then, the robot’s total waiting time at machines M; and Mo,k = 1,2...,2n 4 2, is



(An+T7)0+3(n+1)L+6B. Furthermore, in a 1-unit cycle, the robot loads and unloads each
of the (4n + 5) machines exactly once and visits I and O exactly once; thus, the total travel
time incurred is at least (4n+7)d. Consequently, T'(w,) > 2(4n+7)6+2(n+1)L+4B, which
violates the upper bound on the cycle time. Cycle T'(m,) is, thus, infeasible. The argument
for the case when M; has usage U; and for the case when both M; and M, have usage U, is
similar.

First we show that both M; and M; cannot have usage Us. Suppose both M; and M,
have usage Us, then in 1-unit cycle the following activities must be consecutive : M M} M
M. Thus between activities M{ and M, machines My, 1,k = 1,2...,2n+2, must perform
usage U;. To perform this the robot has to travel on complete circle requiring time (4n+7)4
and must wait 2(n+ 1)L+ 4B time at machines Mo, 1,k =1,2...,2n+ 2, to perform usage
U;. This violates the time-window constraint at My: py = ¢ = (4n+7)0 + (n + 1)L + 2B.
Now it is easy to see either M; or M, cannot have usage Us. Consequently, machines M,
and M, must have usage Us. 0

As a result of above claims, we have following usages for the machines.

e Machines M; and M, have usage Us.
e Machines My, i1,k =1,...,2n + 2, have usage U;.

e Machines My, k = 2,...,2n + 2, have one of the following usage depending form of
1-unit cycle: Uy, Uy, Us. Note if a machine My, has usage U, it can be replaced by

usage Uy and vice-versa without increasing the cycle time.

Let [M], M!] (vesp., [M}, M]]) refer to the elapsed time between the instant of completion
of activity M! and the instant of completion of activity M * (resp., M. ]l)

Claim 3: In the interval [M!, M| the robot performs usage U, at exactly n + 1 machines
from the set {Mog.1 : k=1,...,2n+ 2}.

Proof of Claim 3: The processing time window for M is tight: p; = ¢ = (dn+7)0+ (n+
1)L + 2B. Hence, to achieve the required cycle time, the total time elapsed in the interval
(M}, M) is at most (4n+7)0 — 6 + (n+ 1)L + 2B.

Suppose the robot performs usage U at (n+2) (or more) machines from the set { Moy :
k=1,2,...,2n + 2} in the interval [M!, M{]. Then, the robot travels at least (4n + 7)8
time units to visit these (n + 2) machines and then return to M for unloading. Also, the
total full-waiting time of the robot in the interval [M!, M}] is at least w; = (n +2)L + a =
(n+1)L+2B+a > (n+1)L+2B where a =Y., a;; A C A, |A| = n+ 2. Thus, the total

i€EA
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time elapsed in the interval [M{, M}"] is at least (4n+7)d + (n+ 1)L+ 2B + «, which violates
the time window constraint on M;. Consequently, the robot performs usage U; on at most
(n + 1) machines between the instants of completion of the activities M} and M.
Furthermore, if the robot performs usage U, on fewer than (n + 1) machines from the
set {Moryq : k = 1,2,...,2n + 2}, then between the instant of completion of activity
MY, and that of the start of M!, it must perform i) on at least (n + 2) machines in the
interval. Hence, as discussed above, the minimum time elapsed between these two instants
is (dn+7)6+(n+1)L+2B+a > (4n+7)d —d+ (n+1)L+2B, which violates the processing
time window of M;. The result follows. 0
The argument used to prove the next two claims is similar to that for Claim 3. We,
therefore, state these results without proof.
Claim 4: In the interval [M}, M), the robot cannot perform both subsequences ¢ani1 and

¢2n+2 .

Claim 5: In the interval [ML, M!], the robot cannot perform both subsequences ¢any1 and
Panya-

Claim 6: In cycle m,, the activity M} must precede M.

Proof of Claim 6: Suppose not, then, the interval [M, M¥] is disjoint from the interval
[M{, M}]. Since the time-window constraint is tight for both M; and Ms, the elapsed time
for each of these intervals is (4n+7)6 + (n+1)L +2B. Also, an additional time § is required
between the completion of activities M and M}. Consequently, the total cycle time exceeds
the required upper bound in DQ. The result follows. 0
Claim 7: If T'(w,) < 2(4n+7)5+2(n+1)L+4B, then there ezists a solution to PARTITION.
Proof of Claim 7: Since the robot performs usage U; exactly at n + 1 machines from
the set {My 1 : k =1,2,...,2n + 2} in the interval [M], M¥], the total robot activity and
waiting time in the interval (using Claims 1-4) is (4n + 7)6 + (n + 1)L + B + «, where
a=73 ,eatr; AN C A JA| =n+1 (the set A corresponds to the machines from {Mppy1 1 k =
1,2,...,2n+ 2} with usage U; in [M}, M"]). Also, the total robot activity and waiting time
in the interval [M2, M!] is (using Claims 1-3 and Claims 5-6) (4n+7)d—0-+(n+1)L+B+a’,
where o' = 2B — . In order to meet the time window constraint of both M; and My, we
have o < B and o < B. But o + o' = 2B. Hence there exist A; C A a = ZakeAl ar =
o =3 eaa o =B k=1...2n,and |4 = |A\A]. We, therefore, have a solution to

PARTITION. This completes the proof of Theorem 3. [



We now show that in an interval cell with a dual-gripper robot (RF?Z|(interval, A, cyclic-

1)|Cy), the problem of finding an optimal cycle among all 1-unit cycles is NP-hard.

Theorem 4 In an interval cell under circular layout with a dual-gripper robot, the recog-

nition version of problem REZ°|(interval,A, cyclic-1)|Cy is binary NP-Complete even when

0 <6.

Proof: The proof of Theorem 3 can easily be adopted with inclusion of usage Uj.

6 Interval Cells under a Linear Layout

Note that the problem of finding an optimal 1-unit cycle in additive-travel-time free-pickup
cell with linear layout (RF2|(free, A, cyclic-1)|C}) is polynomial solvable under practically
relevant condition, 6§ < 9. For linear layout, if § < 6§ and 6 is very large, then a single-gripper
1-unit cycle is optimal and is obtainable in polynomial time by an algorithm due to Crama

and ven de Klundert (1997a).

Theorem 5 In an interval cell under linear layout with a dual-gripper robot, the recognition

version of problem REZ|(interval,A, cyclic-1)|C; is binary NP-Complete even when 6 < 4.

Proof: Proof is similar to that of Theorem 4 ]

7 Conclusions and Future Research Directions

A fundamental open question concerning cyclic solutions, in either a single-gripper or a
dual-gripper robotic cell with a free-pickup criterion, is that of finding an optimal k-unit
cycle, k > 1. From an algorithmic point of view, for interval dual-gripper cells, we have
settled the open questions for 1-unit cycle in this paper. For a circular layout, it is unclear
whether the problem is strongly NP-hard or solvable by a pseudo-polynomial time algorithm.
Furthermore, the algorithmic analysis available for k-unit cyclic solutions is scant for k£ > 2.
Table 2 summarizes in the existing literature for 2-unit cycles. There are still many questions
remained to be answered. The main one is whether the complexity results obtained in this

paper and in Rajapakshe (2011) for 1-unit cycles be generalized to 2-unit cycles.
References

Brauner, N. 2008. Identical Part Production in Cyclic Robotic Cells: Concepts, Overview
and Open Questions, Discrete Applied Mathematics, 156(13), 2480-2492.



Table 2: Complexity Map of the Problem of Obtaining an Optimal 2-Unit Cycle under Circular
Layout and the Additive Travel-Time Metrics (P: Polynomially Solvable, UNP-H: Unary NP-Hard,
BNP-H: Binary NP-Hard).

Single-Gripper Cell Dual-Gripper Cell (0 <)
Distance Metric | | Free | No-Wait [ Interval Free [ No-Wait [ Interval
Constant Open P UNP-H Open Open UNP-H
Che et al. (2003) Dawande Dawande
et al. (2010) et al. (2010)
Additive Linear Open P Open Open Open Open

Che et al. (2003)

Additive Circular Open P Open Open Open Open
Che et al. (2003)

Che, A., Chu, C., and Levner, E. 2003. A Polynomial Algorithm for 2-degree Cyclic Robot
Scheduling, European Journal of Operational Research, 145(1), 31-44.

Crama, Y., Kats, V., van de Klundert, J., and Levner, E. 2000. Cyclic scheduling in robotic
flowshops, Annals of Operations Research: Mathematics of Industrial Systems, 96, 97-
124.

Crama, Y. and van de Klundert, J. 1997b. Robotic Flowshop Scheduling is strongly NP-
complete, In W.K. Klein Haneveld et al. (ed.), Ten Years LNMB, CWI Tract, Amster-
dam, 277-286.

Dawande, M., Geismar, N., Pinedo, M., Sriskandarajah, C. 2010. Throughput Optimization
in Dual-Gripper Interval Robotic Cells, ITE Transactions, 42(1), 1-15.

Dawande, M., Geismar, H.N., Sethi, S.P., and Sriskandarajah, C. 2007. Throughput Opti-
mization in Robotic Cells, Springer.

Dawande, M., Geismar, N.; and Sethi, S. 2005a. Dominance of Cyclic Solutions and Some
Open Problems in Scheduling Bufferless Robotic Cells, STAM Review, 47, 709-721.

Dawande, M., Geismar, N., Sethi, S., and Sriskandarajah, C. 2005b. Sequencing and Schedul-
ing in Robotics Cells: Recent Developments, Journal of Scheduling, 8, 387-426.

Drobouchevitch, 1., Sethi, P., and Sriskandarajah, C. 2006. Scheduling Dual-Gripper Robotic
Cells: 1-unit Cycles, Furopean Journal of Operational Research, 171, 598-631.

Garey, M.R. and Johnson, D.S. 1979. Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco.

Geismar, H.N., Chan, L.M.A., Dawande, M., and Sriskandarajah, C. 2008. Approximations
to Optimal k-Unit Cycles for Single-Gripper and Dual-Gripper Robotic Cells, Production
and Operations Management, 17(5), 551-563.

Geismar, H.N., Dawande, M., and Sriskandarajah, C. 2006. Throughput Optimization in
Constant Travel-Time Dual-Gripper Robotic Cells with Parallel Machines, Production
Operations Management, 15, 311-328.

Graham, R.L., Lawler, E.L., Lenstra, J.K., and Rinnooy Kan, A.H.G. 1979. Optimiza-
tion and approximation in deterministic sequencing and scheduling: a survey, Annals of
Discrete Mathematics, 5, 287-326.

Levner, E., Kats, V., and Levit, V. 1997. An Improved Algorithm for Cyclic Flowshop
Scheduling in a Robotic Cell, European Journal of Operational Research, 97, 500-508.
Lei, L. and Wang, T.J. 1989. A Proof: The cyclic hoist-scheduling probelm is NP-complete,

Graduate School of Management, Rutgers University, Working paper, #89-0016.

Rajapakshe, T., Dawande, M., Sriskandarajah, C. 2011. Quantifying the Impact of Layout
on Product1v1ty An Analysm from Robotic-Cell Manufacturing. Operations Research,
59(2), 440-454.

Sethi, S., Sidney, J., and Sriskandarajah, C. 2001. Scheduling in dual-gripper robotic cells
for productivity gains, IEEE Transactions on Robotics and Automation, 17, 324-341.

10



