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Abstract 
The scheduling and control of production and transport processes in manufacturing 
supply chains is usually handled separately, i.e. interdependencies between both 
processes are not taken into account so that globally optimal scheduling decisions cannot 
be guaranteed. An integrated consideration of these processes holds the potential to 
improve the supply chain performance. In addition, manufacturing and transport take 
place in dynamic environments and are subjected to several kinds of disruptions. Critical 
events put the timely execution of a given schedule at risk and ask for a control strategy 
that assures the efficient operation of a supply chain. This paper presents a framework for 
the control of integrated production and transport systems by combining integrated 
scheduling with fault detection methods. A framework for the interplay of the scheduling 
method with signal based fault detection methods is given by a simulation model of the 
production and transport system. Thus, in case of a detected critical disturbance, a 
replanning is performed based on the current status of the running system. 
 
Keywords: Integrated scheduling, Production and transport scheduling problem, Fault 
detection 
 
 
Introduction 
Manufacturing supply chains can be regarded as integrated systems of material and 
information flow, often on a global scale, between partners who perform value adding 
processes at different stages of a product. Effective interfaces between the involved 
partners are crucial for the competitiveness of the supply chain (Christopher 2005). The 
alignment and coordination of resources is supported by advanced planning systems 
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(APS). On the operational level, these systems perform separate planning of production 
and transport processes (Rohde et al. 2000). The processes are aligned by a tactical 
planning based on aggregated information, e.g. mean values for handling times or 
material flows. Since an integrated planning can be superior to the sequential approach of 
current APS (Chen and Vairaktarakis 2005), efficient solution methods for the integrated 
production and transport scheduling problem (PTSP) hold the potential to improve the 
competitiveness of global supply chains. 
 Many research approaches assume complete information about the production and 
transport processes at the time of scheduling and the execution of a plan in a 
deterministic environment. Based on this, the PTSP can be formulated as a mixed-integer 
program (MIP) comprising binary and continuous variables and belongs to the class of 
NP-hard problems. This means that the computation of exact solutions has a high 
complexity and is limited to small problem instances, even in the deterministic case. 
However, operating production and transport systems are subjected to different kinds of 
expected or unexpected events that might result in changes of a given schedule. Examples 
of such perturbations are machine failures, rush orders, traffic congestions, production 
delays, etc. Thus, an effective operational management of these systems requires the 
ability to react dynamically on critical disturbances that put the execution of a schedule at 
risk. As a preliminary, disturbances need to be identified and analyzed. 
 This paper presents a framework for the control of integrated production and 
transport systems that addresses requirements for a control on the operational level. The 
control is based on the execution of a baseline schedule that is adapted dynamically to 
react on critical disturbances. Section 2 presents a literature review of current scheduling 
methods for supply chains as well as of fault detection and analysis methods. Feasible 
schedules are generated by an evolutionary algorithm, presented in Section 3. Here, the 
PTSP in its MIP formulation is decomposed into a combinatorial and a continuous 
subproblem. A solution for the binary variables is computed through the evolution. The 
corresponding continuous variables are determined by the solution of a linear program. 
Section 4 describes how fault detection methods can be used to trigger a rescheduling as 
a reaction to critical disturbances. The scheduling and fault detection methods are 
combined in Section 5 in a simulation environment for the control of the production and 
transport system. 
 
Literature review 
Nowadays, many industries feature a high degree of flexibility in their production 
processes, which is also addressed in literature (Li et al. 2001, Bish et al. 2005). This 
flexibility raises the complexity of the coordination of processes along the supply chain. 
If the supply chain contains large distances between the different production facilities, 
potentially even on a global scale, an efficient inter-facility transport coordination is 
crucial for the performance of the whole chain. The material flow has to be aligned with 
the internal processes of each intermediate production facility in order to achieve low 
costs and lead times as well as a high service level (De Matta and Miller 2004). 
Traditionally, industry does not use integrated approaches where the planning of 
production processes takes into account the transport network and vice versa. Instead, the 
planning is done sequentially, using only little information about adjoining processes on 
the tactical planning level (Rohde et al. 2000). This lack of coordination can lead to a 
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reduced overall efficiency and to unnecessarily high overall costs (De Matta and Miller 
2004). The efficient integration of processes on the operational level is still an open 
research topic, even though several authors address integrated production and transport 
problems. Common approaches are based on mathematical programming and on 
simulation models (De Matta and Miller 2004, Chen and Vairaktarakis 2005, Geismar et 
al. 2008, Scholz-Reiter et al. 2011, Yung et al. 2006). A review of mathematical 
programming models is given by (Mula et al. 2010). Many approaches for integrated 
production and transport scheduling include the vehicle routing problem (VRP), which 
consists of finding an optimal assignment of a number of tasks (e.g. pick-up and delivery) 
to a fleet of vehicles and which is a very intensively studied problem in operations 
research. Several variants of the VRP are also regarded, such as the VRP with time 
windows, multiple depots or non-homogeneous fleets of vehicles (Golden et al. 2010, 
Toth and Vigo 2002, Cordeau et al. 2007). 
 Most of the approaches presented in literature are based on deterministic process 
data, such as a completely known set of orders at the moment of scheduling a certain time 
period and deterministic production and transportation times. However, the real supply 
chain operates in a dynamic environment where processes are exposed to a variety of 
expected and unexpected events. This can be related to single resources (e.g. the break-
down of a machine or a truck delay due to traffic congestion) as well as strategic 
concerns (e.g. shortage of materials) or changes in process data (e.g. change of job 
priority or job cancellations). In order to respect the dynamic influences for scheduling, a 
real-time control strategy is necessary that includes the analysis of disruptive events in 
the system and is able to generate mitigating actions (Ouelhadj and Petrovic 2009). 
Approaches for real-time scheduling were identified in literature as a promising stream of 
research (Baruah and Pruhs 2010, Herroelen and Leus 2005). Different methods for 
dynamic transport scheduling were also investigated, such as agent-based scheduling 
(Mes et al. 2007), on-line decision making (Schönberger and Kopfer 2009) and dynamic 
vehicle scheduling (Huisman et al. 2004). However, a comprehensive approach for the 
dynamic scheduling of integrated production and transport systems on the operational 
level is still missing. 
 Methods for the detection of critical disturbances, called faults, were developed and 
applied in different fields of research. Complex systems, such as chemical plants, 
aircrafts or nuclear power plants with a high need of a problem-free operation for safety 
reasons pushed this development (Hoskins et al. 1991). For manufacturing supply chains, 
the detection of faults is critical to ensure product quality and process reliability. A fault 
is considered as an unpermitted deviation of at least one of the system parameters or 
characteristic properties from an acceptable condition (Isermann and Ballé 1997). Thus, a 
fault holds the potential of affecting the normal operation of the production system and 
should be detected in order to enable a mitigating action. According to (Isermann 2005), 
faults can be classified as abrupt, incipient and intermittent, depending on their 
appearance in time. Abrupt faults are abnormal changes of parameters that occur 
instantaneously or at least very fast. However, the term refers only to the development of 
a signal over time and not to its magnitude. As a matter of fact, the bigger challenge is the 
detection of small deviations that accumulate over time, the so-called incipient faults. 
Finally, intermittent faults occur regularly or irregularly and potentially with varying 
magnitude and are most difficult to detect. The approaches to realize the fault detection 
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can be distinguished in two classes: signal based and model based. The basis of signal 
based fault detection is the direct analysis of monitored system data in order to recognize 
patterns that indicate a fault. Model based approaches include a mathematical model for 
the generation of expected values for the development of the system parameters. An 
analysis of the discrepancy between predicted and actual parameters can also indicate a 
fault (Ding 2008). 
 
Evolutionary scheduling approach 
The preliminary for a control of integrated production and transport systems is the ability 
to compute optimal integrated schedules on the operational level. The underlying 
problem that has to be solved is the integrated production and transport scheduling 
problem (PTSP). This problem can be formulated as a mixed integer program (MIP), 
which is a mathematical optimization problem comprising continuous and binary 
variables (Scholz-Reiter et al. 2010). The PTSP belongs to the class of NP-hard problems 
and the computation of exact solutions for the MIP formulation is limited to very small 
problem instances. Thus, the use of heuristic methods is necessary, that are capable of 
computing near-optimal solutions for larger problem instances in reasonable time. In the 
following, we propose an evolutionary scheduling approach that is based on the idea that 
the computation of the binary variables and the computation of the continuous variables 
for the MIP solution can be treated separately. 
 As in Scholz-Reiter et al. 2010, the modeled production system is a heterogeneous 
open flow-shop with several consecutive production levels. Each production level 
consists of several machines with order-type dependent processing costs and processing 
times, where each job has to be processed by one machine of each level. Additionally, a 
job can be processed externally in very short time but at high costs. Waiting times 
between subsequent production steps are considered as storage that produces costs. After 
production, the products are delivered to subsequent facilities of the supply chain or to 
the final customer. The facilities are located in a fully connected road network. The costs 
of a tour are composed of a fixed amount for operating the tour, a variable amount 
dependent on its length and penalty costs for an unpunctual delivery. External transport at 
high costs is also possible. 
 The binary variables represent the decisions to be taken for a problem solution, e.g. 
if a job is processed externally or not. Assignments are also represented as binary 
decisions, e.g. whether or not a job is assigned to a specific machine or tour. The same 
applies to the sequencing of jobs, e.g. whether or not a job i is processed before a job j on 
a certain machine. The remaining variables are continuous, like the starting times for the 
production on each machine, storage times or the duration of tours. A schematic 
representation of the linear objective function of the MIP is given in Equation (1). 
 
Min. ∑Tlatecpen+∑Tstorcstor+∑∑∑∑Xcprod+∑(Ocfix+Tdurcvar)+∑(EcexP+LcexT) (1) 
                          J                                J                              J      K     N     M                          V                                                    J 

 
 The equation consists of several terms, each representing partial costs. The 
objective is to minimize the total costs, i.e. the sum of all terms. The set of jobs is 
denoted as J, the job types as K. The variables N, M and V represent the set of production 
levels, machines and tours, respectively. The first term minimizes the penalty costs for 
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unpunctual deliveries and the second term represents the total storage costs. The 
production costs for all jobs that are assigned to a machine by the binary variable X are 
given by the third term. The second last term contains the binary variable O, which 
permits a tour to be performed. The total sum of fixed and variable costs of the tours are 
minimized by this term. Finally, the costs for external production and transport are 
represented by the last term. It includes the binary variables E and L that define whether 
or not a job is produced or transported externally. A full description of the program can 
be found in Hartmann et al. 2012. 
 Assuming that the binary variables are already known and not part of the 
optimization, the multiplications containing binary variables turn into static scalar values 
in Equation (1). The remaining optimization problem is a linear program (LP), which can 
be solved efficiently. The solution of the LP determines the costs of the optimal schedule 
corresponding to the given set of binary variables. This leads to the idea of optimizing the 
binary variables through an evolutionary algorithm as shown in Figure 1. 
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Figure 1 – Evolutionary approach for integrated production and transport scheduling 

 
 Evolutionary algorithms are iterative optimization methods that imitate the natural 
selection. The starting point is an initial population of individuals that is evaluated by a 
fitness function, which determines a scalar fitness value as criteria to compare different 
individuals. In case of the scheduling problem, an individual is a full set of binary 
variables and the fitness value of each individual represents the total costs of the 
corresponding schedule. Hence, in this case, the fitness function is the linear program. 
After the corresponding LP has been solved for all individuals of the population, the best 
individuals are selected as survivors for the next generation. In order to receive the 
original population size, new individuals are generated by a mutation process and the 
iteration can be continued. Since the number of binary variables of the MIP is very high, 
heuristic methods can be used to determine a part of the decisions to be taken, e.g. 
routing heuristics for sequencing the jobs on a tour. This way, the solution space for the 
evolution is reduced and the convergence towards good solutions is speeded up. 
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Fault detection based control strategy 
Production as well as transport systems operate in dynamic environments and are 
subjected to different kinds of disruptive events. These might occur expectedly or 
unexpectedly. Thus, in addition to efficient scheduling methods, supply chain 
management has to include a control strategy that can react on disruptions with a 
rescheduling of processes. Three different policies for triggering a rescheduling can be 
distinguished: rolling time horizon, event-driven and hybrid (Vieira et al. 2003). 
Scheduling on a rolling time horizon describes the segmentation of the processes to be 
scheduled into short time periods that are scheduled subsequently in a static way. An 
event-driven policy triggers a rescheduling based on the occurrence of a disruptive event. 
Hence, the renewal epochs are stochastic. The combination, a hybrid rescheduling policy, 
performs the rescheduling periodically and also in case of an unforeseen event. As a 
rescheduling policy for production and transport systems we propose a hybrid strategy as 
shown in Figure 2, where the periodical renewal epochs correspond to the end of a 
working day or week. Based on a computed initial schedule the system is executed and 
monitored by a fault detection method, which is the core of the control strategy. As long 
as no fault is detected, the system is executed according to the given schedule. Besides 
the periodic time out, the fault detection can trigger three different events, i.e. the 
occurrence of an abrupt, a latent or an intermittent fault. Depending on the kind of fault it 
can be decided, if a full rescheduling has to be performed or if the rescheduling of a part 
of the processes is sufficient. 
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Figure 2 – Control strategy based on fault detection 

 
 The fault detection can be based on the direct evaluation of system parameters. A 
classical approach is statistical hypothesis testing, which selects one of two options: not 
rejecting the null hypothesis H0 (i.e. the system is running normally) or rejecting it in 
favor of the alternative hypothesis H1 (i.e. the presence of a fault). The methods which do 
not require a fixed sample size are called sequential analysis. One of these methods is the 
sequential probability ratio test (SPRT). Here, the samples are taken into account one by 
one. The decision between both hypotheses is taken, once enough samples have been 
gathered. The decision is based on the ratio of the conditional likelihoods of the data, 
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given hypotheses H0 and H1, respectively. The SPRT was proven to use the smallest 
number of samples of all statistical tests with the same error probability. 
 
Simulation model and test case 
In the previous sections we described two separate mechanisms that can be combined to a 
control strategy for production and transport systems. The implementation of the 
evolutionary scheduling method requires a powerful computing language. In our case a 
prototypical implementation was done in Matlab. The fault detection analyses data 
signals during the runtime of a system, which can be simulated with software tools such 
as Arena. A structure for the implementation setup is shown in Figure 3. 
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Figure 3 – Simulation concept for combining integrated scheduling and fault detection 

 
 Most commercial software packages offer interfaces to import and export data, such 
as the TCP/IP protocol or via XML files. These can be used to connect both mechanisms 
in order to transfer data in both directions. The scheduling software creates an initial 
schedule for a certain time period and sends it as an input to the simulation model, along 
with information about the characteristic parameters of the scheduled system. The 
simulation model executes the given schedule and monitors relevant system parameters. 
If a fault is detected and a rescheduling is triggered, the current system status is sent 
along with the changed parameters that have to be considered for creating a new schedule. 
The control strategy shall be demonstrated using a simple test case, which consists of 
production at one facility followed by delivery to several customers. The scenario is 
shown in Figure 4. 
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Figure 4 – Test scenario 
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 The scenario consists of a production facility with three subsequent production 
levels, that each contain three machines. The products are processed by one machine of 
each level and then delivered to a customer network with seven cities. The initial 
schedule is computed for a period of one working day of eight hours. The number of jobs 
that have to be processed during this period is 50 with an average processing time of 30 
minutes on each machine. The scenario was simulated three times with the same 
configuration of job types, supply dates, due dates and destinations as well as with 
identical production and delivery times. The first simulation was run without disruptive 
events and serves as a benchmark. The other two simulations were disturbed by an abrupt 
fault, i.e. a downtime of one machine for three hours. The second simulation run did not 
include a control strategy which could react on the disturbance by rescheduling. This 
means that the initial schedule was executed on the other machines while the jobs that 
were supposed to be processed by the broken machine had to wait during the downtime. 
The third simulation run included rescheduling as a reaction on the disturbance. During 
the downtime of the machine, the assigned jobs were included in the schedule of the 
remaining machines of the same levels. The results of the simulation are summarized in 
Table 1. 
 

Table 1 –Simulation results 

  
No 

Disruption 
Disruption - 
no control 

Disruption - 
with control 

#Late deliveries 14 19 22 
Max. tardiness 100% 203% 125% 

Average earliness 100% -64,6% 51,4% 
 
 The due dates of the jobs were set very tight, so that even in the first simulation run 
without disturbance 14 jobs could not be delivered in time. However, the tardiness was 
very small and the average delivery time for all jobs was before the respective due date. 
The average earliness of this simulation was set to a benchmark value of 100%. The 
maximum tardiness of the jobs was also set to 100%. The disturbed simulation without 
control strategy features an increased number of 19 late deliveries due to the waiting time 
at the broken machine. The tardiness of the job with the latest arrival after its due date 
was doubled in comparison to simulation 1. In average, the earliness of the first 
simulation was exhausted and turned into an average lateness. Simulation 3 showed that 
the control strategy has the ability to mitigate the consequences of a disturbance. 
Although the number of late deliveries increased more than in simulation 2, the 
maximum tardiness increased dramatically less. The average earliness of simulation 1 
was reduced only by half, so that the average delivery is still before the due date of a job, 
in stark contrast to simulation 2. This means that the control strategy turned a big delay of 
a small number of jobs into a small delay of more jobs, which does not affect an average 
punctual delivery. 
 
Conclusion 
An integrated view on the scheduling of production and transport operations holds the 
potential to improve the efficiency of global supply chains. However, the production and 
transport scheduling problem belongs to the class of NP-hard optimization problems and 
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is thus hard to solve. In addition, production and transport operate in dynamic 
environments, where unexpected disruptions might impair a reliable and efficient 
performance. 
 This paper introduced a comprehensive scheduling and control strategy for 
integrated production and transport systems. The scheduling problem can be formulated 
as a mixed integer program, which can be solved by exact algorithms only for small 
problem instances. An evolutionary solution method was proposed that enables the 
computation of heuristic solutions also for large problem instances. Based on the 
scheduling method, a framework for a control method was proposed that enables the 
reaction on critical disturbances by rescheduling. A hybrid approach was used to trigger a 
rescheduling based on a rolling time horizon as well as on the occurrence of disruptive 
events, which are detected by signal based fault detection methods. A layout for the 
combination of the scheduling method with the fault detection based control was 
specified. Finally, the ability of the approach to improve the system performance by 
rescheduling as a reaction to a fault was demonstrated with a test scenario. 
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