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Abstract

This paper re-visits the Bayesian approach to test its efficacy in optimally designing the classical (s, Q)
inventory model. A heuristic search of the unstructured (s, Q) decision space finds that one can indeed
make a decent start by the Bayesian approach—and keep total cost nearly optimally low throughout.
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Inventory Control: Theory and Practice

Inventories are a common insurance against uncertainties impacting most production or service
operations. However, inventories do not producing any “return”. Yet inventories help out in
breakdowns or crisis and also improve customer service. So a balance is needed here to
optimally determining (a) “when to order”, and (b) “how much to order”. Uncertainties are
particularly high for a new business. One wants here two answers—how much should the
organization stock initially, and should it adjust decisions (a) and (b) as time progresses? This
paper re-visits the Bayesian approach to test its efficacy in answering these two questions.

Stochastic demand condition

Prominent here are the single period stochastic model, the (s, S) model, and the (s, Q)
model, descriptions being given in Silver et al. (1998), and Jensen and Bard (2003). Murray and
Silver (1966) state that initially one would have great uncertainty concerning the sales potential
of an item. Learning, in the decision theoretic sense, is the process of basing one’s initial
decisions on an informed or inspired guess to start one’s business, and subsequently updating
that initial guess by some rational logic—to assure optimality of future decisions.

Bayesian adaptation to help better sales forecasting was used first by Murray and Silver
(1966). They adaptively changed the distribution of sales to show how to improve decisions.
Others have also used adaptation-aimed learning but few have assessed the potential benefits of
Bayesian adaptation/learning with inventories with the exception of Azoury and Miller (1994),
who show that the quantity ordered under the non-Bayesian policy would be greater than that
under a Bayesian policy. Bayesian methods were used also to design queuing systems (see
Bagchi and Cunningham (1972) and Morales et al. (2005). In this study we inquire:

Can the Bayesian learning logic (prior = prior + data - posterior) of observing

and updating stochastic information help reduce total inventory operating costs?



As shown by Azoury and Miller (1994), we hypothesize that for the popular (s, Q) policy,
Bayesian learning would let one see how the successive incorporation of new data would
improve decisions (reduce the total expect cost (EC) and/or improve service level) as Q* and s*
are continually updated with accumulating demand data. But, up to what point such updating
would be meaningful? We expect that that answer may depend on the estimated unknown but
stationary demand rate for that might require meeting certain minimum sample size. How long
one should sample demand (X) might depend on the cost of using non-optimal rather than a near-
optimal EC? We do not probe this. Here we use a well-developed stochastic inventory model
from the literature—the (s, Q) model. It incorporates safety stock into the reorder stock level (s)
and uses an optimum constant quantity Q of an order every time the current stock level touches
or falls below s. Optimum s and Q minimize the total expected cost/unit time (Silver 2007).

The (s, Q) Inventory Model

This study uses the results of Jensen and Bard (2003). We assume that only a single item
is stocked and sold whose inventory is managed to keep the expected total cost minimum,
comprising holding, replenishment and stock out costs.

Ordering too much or too little or at the wrong time can disrupt the optimal control of
inventory, an event easily caused by uncertainty in demand. Here the deterministic approach
clearly does not minimize the expected total cost. At some instant of time if inventory level is z,
then the probability of shortage (Ps), the probability of excess (Pe), the expected shortage (Es)

and expected excess (E. ) are, respectively,
P, =P[x>z]=1-F(2)
P, =P[x<z]=F(2)

»

E, = [(z—x)f(x)dx (for continuous demand x)

E, :i(x—z)P(x) (for discrete demand x), and
E, = zz—,u + E;

This study used the (s, Q) inventory management policy to serve as the test bed to probe
our query. Here demand is stochastic. (s, Q) first determines the optimum values (s” and Q") for
the reorder point (s) and the order quantity (Q). It then monitors inventory continuously through
the repeated execution of order cycles. An order of size Q" is placed when the current inventory
level z touches s”. The order (quantity = Q") is received after lead time L to replenishes stock.

Optimum s” and Q" are found as follows. When L is small compared to the expected time
required to exhaust Q, only 1 order would be outstanding. (In practice a plant may place
multiple orders on a vendor when expediting becomes ineffective, but we do not consider this
case here.) An order cycle is the time between two successive receipts. If a and L respectively
represent the average demand rate and lead time, then the mean demand during lead time is p =
aL. The reorder point being s, Ps is 1 — F(s), and the system’s service level (fraction of demand
during lead time that is met) is 1 — Ps = F(s). The safety stock (excess stock beyond p) is SS ='s
— . The general solution for this situation has been given by Jensen and Bard (2003) as follows.



If the per SKU unit holding cost is h per unit time, then

Expected holding cost/unit time = h(% +s— yj

The time between orders is random with mean of Q/a. If the cost of replenishment/order
is K then the expected replenishment cost/unit time is (Ka/Q). If the expected shortage
cost/order cycle is Cs, then the expected shortage cost/unit time will be Cy/(Q/a) = Csa/Q. The
general model for the expected total cost/unit time for the (s, Q) policy will thus be

EC(s,Q)=h(%+s—yj+%+%Cs (1)

Equation (1) is the expression for the expected total cost/unit time for an inventory
system being operated by the (s, Q) policy. To optimize it one uses decision variables s, the
reorder point, and Q, the quantity ordered in each order cycle. Analytically, (1) may be partially
differentiated with respect to s and Q and the derivatives equated to zero. Doing this yields two
conditions that simultaneously characterize the two optimal values Q"and s". These are

o - /2a(Kh+ C, )

and
0s a

Peterson and Silver (1979) employ special cases for obtaining the optimal values Q" and
s". The first case assumes that a constant cost 7z is expended whenever a stock out event occurs.
This gives us a quick way to evaluate Cs—the expected shortage cost/order cycle. This is

C, =7r1P[X>S]=7r10].f(X)dX=7rl[1— F(s)] 4)

Equation (3) may be now utilized since we have Cs expressed in (4) as a function of s. Thus

oC, _ . __h_Q

o o mte)=y (5)

which gives f(s") _hQ (6)
7,

with C, = 7,(1-F(s") (7

Equation (6) helps link s* with Q" via (2). Note that seeking a solution to the (s, Q) policy
problem by simultaneously solving (2), (6) and (7) for arbitrary demand distribution F(s) is not
trivial.



A variant of the constant cost w1 per stock out event is a cost m, incurred for every unit
short in a stock out. Then the expected shortage cost/order cycle will be dependent on how
many units are expected to be shorted in each order cycle (Es). Here,

E, = T(x —s) f(x)dx

and therefore C, = 7,E,. This gives

oC,
0s

= —;rzwjf (X)dx = —7,(1— F(s)) (8)

Combining (3) and (8) one obtains

L o ra-F)=—"2
0s a

which for a specified Q gives the condition for the optimal reorder point s~ as

Fs)=1-19 9)

7,a

The optimum decision (s, Q") is the combination of s and Q that minimizes EC given by (1).

Owing to the non-linear and complex nature of (1) through (9) we used an orthogonal
array experimental computational framework to first determine the sensitivity of the two
performances (responses)--% service level and total expected cost. For this we selected two
working levels for each of the factors—monthly demand (a), holding cost (h), shortage cost (x1)
and order cost (K) as shown in Table 1, and a Lg array (Montgomery 2008). Table 1 and Figures
1 and 2 show the results. The following inferences may be drawn:

e Optimal Order Quantity Q" is reactive to a, h and K, but only mildly to shortage cost x1.
e Service level seems to be robust relative to most factors considered in the region of the

cost parameters studied. It is closely related to the setting of the reorder point s .

e Total Expected Cost/unit time is relatively robust with respect to shortage cost per stock

out event 1, but sensitive to a, h and K.

These deductions—typically unavailable to the inventory manager—suggest that it would
be wise to spend effort in optimally setting the reorder point s~ and order quantity Q" before one
declares the operational policies of a stochastic inventory system. In one sense, this information
is analogous to the relative robustness of the total operating cost/unit time to EOQ for a
deterministic inventory system. Limited generalization of such deductions may be attempted in a
given cost-demand scenario to assess how accurately the parameters a, h, K and nl need to be
estimated, to assure minimum cost operation of the system. In this study we focus on the factor
with perhaps the highest uncertainty—the stochastic nature of X, the demand per unit time.



Table 1: An Lg Computational Experiment to uncover the Sensitivity of Service Level and
Total Expected Cost of an (s, Q) inventory System

Total Expected

a
Orthogonal Units h nl K s Q" %Service | Cost/unit time
Experiment# | /month Level
1 50 5 500 400 19.25 91 97.2 488.76
2 50 5 1000 800 19.88 127.9 98.2 676.6
3 50 10 500 400 18.56 64.9 95.7 709.93
4 50 10 1000 800 19.25 91 97.2 977,51
5 100 5 500 800 33.61 181.2 95.74 949.29
6 100 5 1000 400 36.22 128.4 98.76 698.3
7 100 10 500 800 32.51 129.1 93.35 1366.1
8 100 10 1000 400 35.41 91.5 98.13 1019.2
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Figure 1 Sensitivity of Optimal Reorder Point (s"), Order Quantity (Q") to

Monthly Demand Rate and Costs
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Figure 2 Sensitivity of Expected Total Cost/unit time to

Monthly Demand Rate and Costs




Bayesian learning and Inferencing

The assumption of stationarity is generally made to keep the analysis straightforward. In
the present case also we assume stationarity; specifically, the parameters that control the
distribution of demand are assumed to be unknown, but stationary.

Since the Bayesian learning logic (prior = prior + data - posterior) follows the path of
pre-supposing information, observing the phenomena and then repeatedly updating stochastic
information, one is advised to use an appropriate subjective probability function for the “prior”.
In theory this is done by deriving the posterior density from the likelihood function and the prior
density, and deriving the distribution of the reduced-form parameters from the initial information
on the unknown parameters controlling the stochastic process (here the random demand).

For the present case, demand is assumed to be random, Poisson distributed with an
unknown parameter (average rate) A/unit time. This extends two advantages: First, the Poisson
distribution is often quite realistic when demand is random and independent of earlier and future
demands. Secondly, from analytical point of view, the Bayesian prior-posterior conjugate family
(Raiffa and Schlaifer 1961) of the distribution of the possible values of A is Gamma, a two-
parameter distribution convenient to update. However, this is a minor restriction—Bayesian
inference may be performed using stochastic simulation of the process also (Morales et al. 2005).

The Bayesian Learning Framework
The conjugate prior distribution for the Poisson rate parameter is the Gamma distribution
with two parameters a and 3, the density function being

Gamma (x) = ﬂ—x‘“e’ﬁx, x>0,a>0,>0
I'(a)

where I'(«) = I t* e dt.
0

Here the Gamma distribution is used as a conjugate prior (Raiffa and Schlaifer 1961) for
the rate parameter 4 Gamma has a mean of o/f, variance o/p? and it is known to be flexible in
shape. The interpretation is as follows: There are a total occurrences in [ time intervals.
Updating the Gamma prior is straightforward. For instance, if r quantities are demanded from
the inventory in a time period of length t, the posterior density of 2 will be a Gamma distribution
with o = a + rand B = B + t. The maximum likelihood estimated of 2 is obtained from the
posterior mean E(4) = (a + r)/(B + ). This posterior mean E(4) approaches A, . in the limit as o

- 0 and B = 0. In the present application our intention will be to start with some reasonably
assumed prior value of Poisson demand rate 1 (= a/f) and then continually update it using r (the
demand observed in the time span t) as time t advances. Bagchi and Cunningham (1972) provide
the decision theoretic rationale for adopting this procedure.



Table 2 Sample Poisson Random Demand Values simulated with 2 = 100. Assuming a prior as a
Gamma(o, = 5, p = 1) distribution, we compute Mean of the Gamma Posterior distributions as
monthly demand is successively observed.

Month # | Observed For Posterior A = Mean of Gamma SD = Upper/Lower
Monthly Gamma (g, B): Posterior SQRT(a/f"2) | estimates of 2
Demand

i ki Sum | a=a+sumki | =B+n J estimate = a/f SD (4 est) +95% | -95%
ki

Month 1 111 111 116 2 58.00 5.39 68.77 | 47.23

2 111 222 227 3 75.67 5.02 85.71 | 65.62
3 92 314 319 4 79.75 4.47 88.68 | 70.82
4 104 418 423 5 84.60 411 92.83 | 76.37
5 102 520 525 6 87.50 3.82 95.14 | 79.86
6 98 618 623 7 89.00 3.57 96.13 | 81.87
7 etc.
Simulated Posterior Poisson Mean
Demand, True A = 100/month
Prior assumed to be Gamma(5,1)
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Figure 3 Trace of Continually Updated Posterior Mean Estimates produced by Succession of
Samples drawn from a Simulated Poisson Distribution with true A = /00/month

The Bayesian approach gives us a way around a special decision problem. Sometimes
one makes the best decision on the basis of a given set of data available from past history, or
produced by conducting some special statistical experiments. What if there is no such history
available, or there is no opportunity to conduct experiments? As said above, the Bayesian
approach begins with an assumed prior about the decision environment, and then by using a
learning logic (prior - prior + data - posterior) follows the path of pre-supposing information,
observes the phenomena and then repeatedly updates information.

Table 2 and Figure 3 illustrate the effect of updating the maximum likelihood estimate of
the mean demand of a Poisson distribution. Here a Poisson demand process with true mean
demand (1) of 100 units/month was observed (simulated) in succession of months 1, 2, 3, ... etc.
and the estimates of the posterior along with the +95% limits of this estimate was calculated.
The prior of 2 was assumed to be a Gamma(a = 5, p = 1) distribution with an average of 5
units/month. The simulated monthly demands are shown in the second column (ki) of Table 2.




Continual updating of the estimated value of A produced a 95% confidence band for 1 as (96.81,
100.77) after 100 updates. Clearly, another assumed value of the prior would produce another
trace of estimates. But it can be assured based on the standard deviation of the estimated A that
they would all eventually converge toward the true demand as time t increases.

Regular Bayesian updates of Demand Rate help keep Total Expected Cost near Minimum
One way to operate the (s, Q) inventory policy is to be myopic (Levy et al. 2007) in
setting the operating values of s and Q at some initial (prior) guess for the demand rate 4, or use
only a limited amount of data to estimate 4. Such trust on an initial guess for A and not changing
it later may even be favored, for it saves the effort needed to incorporate any emergent evidence
about true demand as the business moves forward. Many practitioners indeed do not change the
initial assumption about a or 4 or even costs, though Azoury and Miller (1994) deplore this.
Plainly, the s and Q derived using the initial guess for A would almost surely be
suboptimal, except by accident (Figure 2 indicates the strong dependence of EC on a (hence on
A)). To test any possible merit of the myopic approach we studied it computationally. Table 3
displays the effect of setting the unknown demand rate 4 at some unsubstantiated value
(assuming mistakenly this to be the true demand), deriving the flawed s” and Q" from it, and
incurring the consequent expected total cost EC when the (s, Q) policy is used. It is
straightforward to compare these higher values of EC with the near optimal EC achievable by
getting close to the true demand rate by using Bayesian updates. Table 3 used 100 units/month
as the true demand rate whereas the (“wrongly”) presumed values of 2 were set respectively at
25, 50, 75, 150, 200, and 300 units/month. The costs used were h = $10/unit-month, 1 = $500
per backorder event and K = $800/order placed. Figures 3 and 4 show the effect of flawed
(differing from the true) demand conjecture (“prior’”) on EC, and the service level projected.

Table 3 Costs and Service Levels Experienced when s” and Q" are set based on a prior
estimated demand, but true demand (aT) is different from the prior estimate (a)

a = Estimated demand/month based on a flawed prior guess 25 50 75 100 | 150 | 200 | 300
aT = True demand/month 100 | 100 | 100 | 100 | 100 | 100 | 100
s* = Optimum Reorder Point based on prior 10 18 25 33 47 61 88
Q* = Optimum Order Quantity based on prior 65 91 111 | 129 | 158 | 183 | 224
Holding Cost based on a and (s*, Q*) 360 | 510 | 624 | 720 | 883 | 1019 | 1248
Holding Cost based on (s*, Q*) but facing True demand 173 | 385 | 569 | 721 | 989 | 1269 | 1748
Replenishment Cost by a and (s*, Q*) 310 | 438 | 537 | 620 | 759 | 876 | 1073
Replenishment Cost based on (s*, Q*) but facing True demand 1239 | 876 | 715 | 620 | 506 | 438 | 358
Shortage Cost by a and (s*, Q*) 13 18 22 26 32 36 45
Shortage Cost based on (s*, Q*) but facing True demand 52 36 21 26 36 18 15
Expected Total Cost by a and (s*, Q%) 683 | 966 | 1183 | 1366 | 1673 | 1932 | 2366
Expected Total Cost based on (s*, Q*) but facing True demand 1464 | 1297 | 1305 | 1366 | 1531 | 1725 | 2121
Service level experienced at True Demand but operating at (s*, Q*) | 98.8 | 97.2 | 95.4 | 934 | 88.5 | 825 | 59.6
% % % % % % %




Expected Total Cost facing True Demand
(= 100/month) but using (s*, Q*) based on
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Figure 4 The Expected Total Cost for a (s, Q) System that uses a
flawed prior estimate that is far from the true demand value
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Figure 5 Service Level provided by a (s, Q) System that uses a
flawed prior estimate that is far from the true demand value

A review of Table 3 and Figures 4 and 5 would suggest that the results of using Bayesian
learning to keep continually updating the demand estimate provide a mixed message. But a
closer look reveals that the minimum total cost (s, Q) policy should indeed be based on a demand
estimate as close to the true demand as is possible. But Figure 4 appears to suggest that a lower
guess for demand actually improves customer service! Prima facie, therefore, guessing a low
value of demand appears to be doing something good. But such inference is shortsighted and
most misleading. More seriously, this is not a defect in the model or its analysis.

Recall that our objective of setting up the (s, Q) model to help find a rational way to
manage inventories when demand is stochastic included spelling out the objective first—that of
minimizing (1), the expected total cost/unit time. This total cost included three components—the
holding cost, the replenishment cost, and the shortage cost. At least for this model, therefore,
maximizing customer service per se was not the objective. Customer service (F(s)) enters into
(1) via Cs (= m(1 — F(s))), the cost of short shipment. If one requires the final (s, Q) solution to
assure a high level of customer service, one would need to use a large value for m1. Thus, like in
any optimization, one must be clear about the objective—where does he want to put priority?



Conclusions

This study has investigated the value of incorporating Bayesian learning into the popular
(s, Q) model for managing inventories when demand is stochastic. The study finds that one can
indeed make a decent start by the Bayesian approach—and stay the course nearly optimally—
while upholding a target service level by suitably selecting costs and also keeping the expected
operating cost/unit time minimum. Specifically, this study uncovers the high value in continually
updating the decisions (a) “when to order”, and (b) “how much to order”, rather than sticking to
the initial guess for the demand average, as is frequently practiced.

This work utilized an orthogonal array experimental framework to determine the
sensitivity of the two performances (responses)--% service level and total expected cost. For this
two working levels for each of the factors—monthly demand (a), holding cost (h), shortage cost
(m1) and order cost (K) were selected and a Lg array was adopted to guide the computations.
Furthermore, importantly, myopic estimate of true demand would surely yield suboptimal EC.

These deductions—typically unavailable to the inventory manager—suggest that it would
be wise to spend effort in optimally setting the reorder point s~ and order quantity Q" before one
sets out to declare the operational policies to cope with stochastic demand.
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