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Abstract 
This paper re-visits the Bayesian approach to test its efficacy in optimally designing the classical (s, Q) 

inventory model.  A heuristic search of the unstructured (s, Q) decision space finds that one can indeed 

make a decent start by the Bayesian approach—and keep total cost nearly optimally low throughout.  
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Inventory Control: Theory and Practice 

Inventories are a common insurance against uncertainties impacting most production or service 

operations. However, inventories do not producing any ―return‖.  Yet inventories help out in 

breakdowns or crisis and also improve customer service. So a balance is needed here to 

optimally determining (a) ―when to order‖, and (b) ―how much to order‖.  Uncertainties are 

particularly high for a new business.  One wants here two answers—how much should the 

organization stock initially, and should it adjust decisions (a) and (b) as time progresses?  This 

paper re-visits the Bayesian approach to test its efficacy in answering these two questions.   

 

Stochastic demand condition 

Prominent here are the single period stochastic model, the (s, S) model, and the (s, Q) 

model, descriptions being given in Silver et al. (1998), and Jensen and Bard (2003). Murray and 

Silver (1966) state that initially one would have great uncertainty concerning the sales potential 

of an item.  Learning, in the decision theoretic sense, is the process of basing one’s initial 

decisions on an informed or inspired guess to start one’s business, and subsequently updating 

that initial guess by some rational logic—to assure optimality of future decisions.    

Bayesian adaptation to help better sales forecasting was used first by Murray and Silver 

(1966).  They adaptively changed the distribution of sales to show how to improve decisions.  

Others have also used adaptation-aimed learning but few have assessed the potential benefits of 

Bayesian adaptation/learning with inventories with the exception of Azoury and Miller (1994), 

who show that the quantity ordered under the non-Bayesian policy would be greater than that 

under a Bayesian policy. Bayesian methods were used also to design queuing systems (see 

Bagchi and Cunningham (1972) and Morales et al. (2005). In this study we inquire: 

Can the Bayesian learning logic (prior  prior + data  posterior) of observing 

and updating stochastic information help reduce total inventory operating costs? 



 

 

As shown by Azoury and Miller (1994), we hypothesize that for the popular (s, Q) policy, 

Bayesian learning would let one see how the successive incorporation of new data would 

improve decisions (reduce the total expect cost (EC) and/or improve service level) as Q* and s* 

are continually updated with accumulating demand data.  But, up to what point such updating 

would be meaningful?  We expect that that answer may depend on the estimated unknown but 

stationary demand rate for that might require meeting certain minimum sample size.  How long 

one should sample demand (X) might depend on the cost of using non-optimal rather than a near-

optimal EC? We do not probe this. Here we use a well-developed stochastic inventory model 

from the literature—the (s, Q) model.  It incorporates safety stock into the reorder stock level (s) 

and uses an optimum constant quantity Q of an order every time the current stock level touches 

or falls below s.  Optimum s and Q minimize the total expected cost/unit time (Silver 2007). 

 

The (s, Q) Inventory Model  

This study uses the results of Jensen and Bard (2003). We assume that only a single item 

is stocked and sold whose inventory is managed to keep the expected total cost minimum, 

comprising holding, replenishment and stock out costs.  

Ordering too much or too little or at the wrong time can disrupt the optimal control of 

inventory, an event easily caused by uncertainty in demand.  Here the deterministic approach 

clearly does not minimize the expected total cost.  At some instant of time if inventory level is z, 

then the probability of shortage (Ps), the probability of excess (Pe), the expected shortage (Es ) 

and expected excess (Ee ) are, respectively, 
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This study used the (s, Q) inventory management policy to serve as the test bed to probe 

our query. Here demand is stochastic.  (s, Q) first determines the optimum values (s
*
 and Q

*
) for 

the reorder point (s) and the order quantity (Q). It then monitors inventory continuously through 

the repeated execution of order cycles.  An order of size Q
*
 is placed when the current inventory 

level z touches s
*
. The order (quantity = Q

*
 ) is received after lead time L to replenishes stock.      

Optimum s
*
 and Q

*
 are found as follows.  When L is small compared to the expected time 

required to exhaust Q, only 1 order would be outstanding.  (In practice a plant may place 

multiple orders on a vendor when expediting becomes ineffective, but we do not consider this 

case here.)  An order cycle is the time between two successive receipts.  If a and L respectively 

represent the average demand rate and lead time, then the mean demand during lead time is μ = 

aL.  The reorder point being s, Ps is 1 – F(s), and the system’s service level (fraction of demand 

during lead time that is met) is 1 – Ps = F(s).  The safety stock (excess stock beyond μ) is SS = s 

– μ.  The general solution for this situation has been given by Jensen and Bard (2003) as follows. 



 

 

If the per SKU unit holding cost is h per unit time, then  

Expected holding cost/unit time = s
a

Q
h  

The time between orders is random with mean of Q/a.  If the cost of replenishment/order 

is K then the expected replenishment cost/unit time is  (Ka/Q). If the expected shortage 

cost/order cycle is Cs, then the expected shortage cost/unit time will be Cs/(Q/a) = Csa/Q.  The 

general model for the expected total cost/unit time for the (s, Q) policy will thus be 
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Equation (1) is the expression for the expected total cost/unit time for an inventory 

system being operated by the (s, Q) policy.  To optimize it one uses decision variables s, the 

reorder point, and Q, the quantity ordered in each order cycle.  Analytically, (1) may be partially 

differentiated with respect to s and Q and the derivatives equated to zero.  Doing this yields two 

conditions that simultaneously characterize the two optimal values Q
* 
and s

*
.   These are 
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Peterson and Silver (1979) employ special cases for obtaining the optimal values Q
* 

and 

s
*
.   The first case assumes that a constant cost π1 is expended whenever a stock out event occurs.  

This gives us a quick way to evaluate Cs—the expected shortage cost/order cycle.  This is 
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Equation (3) may be now utilized since we have Cs expressed in (4) as a function of s.  Thus 
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Equation (6) helps link s
*
 with Q

*
 via (2).  Note that seeking a solution to the (s, Q) policy 

problem by simultaneously solving (2), (6) and (7) for arbitrary demand distribution F(s) is not 

trivial.       
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A variant of the constant cost π1 per stock out event is a cost π2 incurred for every unit 

short in a stock out.  Then the expected shortage cost/order cycle will be dependent on how 

many units are expected to be shorted in each order cycle (Es).   Here,  
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and therefore  ss EC 2 .  This gives 
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Combining (3) and (8) one obtains 
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which for a specified Q gives the condition for the optimal reorder point s
*
 as  
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The optimum decision (s
*
, Q

*
) is the combination of s and Q that minimizes EC given by (1). 

Owing to the non-linear and complex nature of (1) through (9) we used an orthogonal 

array experimental computational framework to first determine the sensitivity of the two 

performances (responses)--% service level and total expected cost.  For this we selected two 

working levels for each of the factors—monthly demand (a), holding cost (h), shortage cost (π1) 

and order cost (K) as shown in Table 1, and a L8 array (Montgomery 2008).  Table 1 and Figures 

1 and 2 show the results.  The following inferences may be drawn: 

 Optimal Order Quantity Q
*
 is reactive to a, h and K, but only mildly to shortage cost π1. 

 Service level seems to be robust relative to most factors considered in the region of the 

cost parameters studied.  It is closely related to the setting of the reorder point s
*
. 

 Total Expected Cost/unit time is relatively robust with respect to shortage cost per stock 

out event π1, but sensitive to a, h and K.    

These deductions—typically unavailable to the inventory manager—suggest that it would 

be wise to spend effort in optimally setting the reorder point s
*
 and order quantity Q

*
 before one 

declares the operational policies of a stochastic inventory system. In one sense, this information 

is analogous to the relative robustness of the total operating cost/unit time to EOQ for a 

deterministic inventory system.  Limited generalization of such deductions may be attempted in a 

given cost-demand scenario to assess how accurately the parameters a, h, K and π1 need to be 

estimated, to assure minimum cost operation of the system.  In this study we focus on the factor 

with perhaps the highest uncertainty—the stochastic nature of X, the demand per unit time.   

 



 

 

Table 1:  An L8 Computational Experiment to uncover the Sensitivity of Service Level and 

Total Expected Cost of an (s, Q) inventory System 

 

 

 

 
Figure 1 Sensitivity of Optimal Reorder Point (s

*
), Order Quantity (Q

*
) to 

Monthly Demand Rate and Costs 

 

 

 
Figure 2 Sensitivity of Expected Total Cost/unit time to 

Monthly Demand Rate and Costs 
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Orthogonal 

Experiment # 

a 

Units 

/month 

 

h 

 

π1 

 

K 

 

s
* 

 

Q
* 

 

%Service 

Level 

Total Expected 

Cost/unit time 

1 50 5 500 400 19.25 91 97.2 488.76 

2 50 5 1000 800 19.88 127.9 98.2 676.6 

3 50 10 500 400 18.56 64.9 95.7 709.93 

4 50 10 1000 800 19.25 91 97.2 977.51 

5 100 5 500 800 33.61 181.2 95.74 949.29 

6 100 5 1000 400 36.22 128.4 98.76 698.3 

7 100 10 500 800 32.51 129.1 93.35 1366.1 

8 100 10 1000 400 35.41 91.5 98.13 1019.2 



 

 

Bayesian learning and Inferencing 

The assumption of stationarity is generally made to keep the analysis straightforward. In 

the present case also we assume stationarity; specifically, the parameters that control the 

distribution of demand are assumed to be unknown, but stationary.  

Since the Bayesian learning logic (prior  prior + data  posterior) follows the path of 

pre-supposing information, observing the phenomena and then repeatedly updating stochastic 

information, one is advised to use an appropriate subjective probability function for the ―prior‖.  

In theory this is done by deriving the posterior density from the likelihood function and the prior 

density, and deriving the distribution of the reduced-form parameters from the initial information 

on the unknown parameters controlling the stochastic process (here the random demand).   

For the present case, demand is assumed to be random, Poisson distributed with an 

unknown parameter (average rate) λ/unit time.  This extends two advantages:  First, the Poisson 

distribution is often quite realistic when demand is random and independent of earlier and future 

demands.  Secondly, from analytical point of view, the Bayesian prior-posterior conjugate family 

(Raiffa and Schlaifer 1961) of the distribution of the possible values of λ is Gamma, a two-

parameter distribution convenient to update. However, this is a minor restriction—Bayesian 

inference may be performed using stochastic simulation of the process also (Morales et al. 2005).     

 

The Bayesian Learning Framework 

The conjugate prior distribution for the Poisson rate parameter is the Gamma distribution 

with two parameters α and β, the density function being  

0,0,0,
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where 
0
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Here the Gamma distribution is used as a conjugate prior (Raiffa and Schlaifer 1961) for 

the rate parameter λ Gamma has a mean of α/β, variance α/β
2
 and it is known to be flexible in 

shape.  The interpretation is as follows:  There are α total occurrences in β time intervals.  

Updating the Gamma prior is straightforward.  For instance, if r quantities are demanded from 

the inventory in a time period of length t, the posterior density of λ will be a Gamma distribution 

with α’ = α + r and β’ = β + t.  The maximum likelihood estimated of λ is obtained from the 

posterior mean E(λ) = (α + r)/(β + t).  This posterior mean E(λ) approaches MLE in the limit as α 

 0 and β  0.  In the present application our intention will be to start with some reasonably 

assumed prior value of Poisson demand rate λ (= α/β) and then continually update it using r (the 

demand observed in the time span t) as time t advances.  Bagchi and Cunningham (1972) provide 

the decision theoretic rationale for adopting this procedure. 

 



 

 

Table 2  Sample Poisson Random Demand Values simulated with λ = 100. Assuming a prior as a 

Gamma(α = 5, β = 1) distribution, we compute Mean of the Gamma Posterior distributions as 

monthly demand is successively observed. 

 

Month # 

 

Observed 

Monthly 

Demand 

  

For Posterior 

Gamma (α, β): 
= Mean of Gamma 

Posterior 

 
 

 

SD = 

SQRT(α/β^2) 

 

Upper/Lower 

estimates of λ 

i ki Sum 

ki 

α = α + sum ki β = β + n λ estimate =  α/β SD (λ est) +95% -95% 

Month 1 111 111 116 2 58.00 5.39 68.77 47.23 

2 111 222 227 3 75.67 5.02 85.71 65.62 

3 92 314 319 4 79.75 4.47 88.68 70.82 

4 104 418 423 5 84.60 4.11 92.83 76.37 

5 102 520 525 6 87.50 3.82 95.14 79.86 

6 98 618 623 7 89.00 3.57 96.13 81.87 

7 etc.        

 

 

 
Figure 3 Trace of Continually Updated Posterior Mean Estimates produced by Succession of 

Samples drawn from a Simulated Poisson Distribution with true λ = 100/month 

 

The Bayesian approach gives us a way around a special decision problem.  Sometimes 

one makes the best decision on the basis of a given set of data available from past history, or 

produced by conducting some special statistical experiments.  What if there is no such history 

available, or there is no opportunity to conduct experiments?  As said above, the Bayesian 

approach begins with an assumed prior about the decision environment, and then by using a 

learning logic (prior  prior + data  posterior) follows the path of pre-supposing information, 

observes the phenomena and then repeatedly updates information.    

Table 2 and Figure 3 illustrate the effect of updating the maximum likelihood estimate of 

the mean demand of a Poisson distribution.  Here a Poisson demand process with true mean 

demand (λ) of 100 units/month was observed (simulated) in succession of months 1, 2, 3, … etc.  

and the estimates of the posterior along with the ±95% limits of this estimate was calculated.  

The prior of λ was assumed to be a Gamma(α = 5, β = 1) distribution with an average of 5 

units/month.  The simulated monthly demands are shown in the second column (ki) of Table 2. 
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Continual updating of the estimated value of λ produced a 95% confidence band for λ as (96.81, 

100.77) after 100 updates.  Clearly, another assumed value of the prior would produce another 

trace of estimates.  But it can be assured based on the standard deviation of the estimated λ that 

they would all eventually converge toward the true demand as time t increases. 

 

Regular Bayesian updates of Demand Rate help keep Total Expected Cost near Minimum 

One way to operate the (s, Q) inventory policy is to be myopic (Levy et al. 2007) in 

setting the operating values of s and Q at some initial (prior) guess for the demand rate λ, or use 

only a limited amount of data to estimate λ. Such trust on an initial guess for λ and not changing 

it later may even be favored, for it saves the effort needed to incorporate any emergent evidence 

about true demand as the business moves forward.  Many practitioners indeed do not change the 

initial assumption about a or λ or even costs, though Azoury and Miller (1994) deplore this.  

Plainly, the s and Q derived using the initial guess for λ would almost surely be 

suboptimal, except by accident (Figure 2 indicates the strong dependence of EC on a (hence on 

λ)). To test any possible merit of the myopic approach we studied it computationally.  Table 3 

displays the effect of setting the unknown demand rate λ at some unsubstantiated value 

(assuming mistakenly this to be the true demand), deriving the flawed s
*
 and Q

*
 from it, and 

incurring the consequent expected total cost EC when the (s, Q) policy is used.  It is 

straightforward to compare these higher values of EC with the near optimal EC achievable by 

getting close to the true demand rate by using Bayesian updates. Table 3 used 100 units/month 

as the true demand rate whereas the (―wrongly‖) presumed values of λ were set respectively at 

25, 50, 75, 150, 200, and 300 units/month. The costs used were h = $10/unit-month, π1 = $500 

per backorder event and K = $800/order placed.  Figures 3 and 4 show the effect of flawed 

(differing from the true) demand conjecture (―prior‖) on EC, and the service level projected. 

 

Table 3  Costs and Service Levels Experienced when s
*
 and Q

*
 are set based on a prior 

estimated demand, but true demand (aT) is different from the prior estimate (a) 

a = Estimated demand/month based on a flawed prior guess  25 50 75 100 150 200 300 

aT = True demand/month 100 100 100 100 100 100 100 

s* = Optimum Reorder Point based on prior 10 18 25 33 47 61 88 

Q* = Optimum Order Quantity based on prior 65 91 111 129 158 183 224 

Holding Cost based on a and (s*, Q*) 360 510 624 720 883 1019 1248 

Holding Cost based on (s*, Q*) but facing True demand 173 385 569 721 989 1269 1748 

Replenishment Cost by a and (s*, Q*) 310 438 537 620 759 876 1073 

Replenishment Cost based on (s*, Q*) but facing True demand 1239 876 715 620 506 438 358 

Shortage Cost by a and (s*, Q*) 13 18 22 26 32 36 45 

Shortage Cost based on (s*, Q*) but facing True demand 52 36 21 26 36 18 15 

Expected Total Cost by a and (s*, Q*) 683 966 1183 1366 1673 1932 2366 

Expected Total Cost based on (s*, Q*) but facing True demand 1464 1297 1305 1366 1531 1725 2121 

Service level experienced at True Demand but operating at (s*, Q*) 98.8
% 

97.2
% 

95.4
% 

93.4
% 

88.5
% 

82.5
% 

59.6
% 



 

 

 
Figure 4  The Expected Total Cost for a (s, Q) System that uses a 

flawed prior estimate that is far from the true demand value 

 

 

 
Figure 5   Service Level provided by a (s, Q) System that uses a 

flawed prior estimate that is far from the true demand value 

 

A review of Table 3 and Figures 4 and 5 would suggest that the results of using Bayesian 

learning to keep continually updating the demand estimate provide a mixed message.  But a 

closer look reveals that the minimum total cost (s, Q) policy should indeed be based on a demand 

estimate as close to the true demand as is possible.  But Figure 4 appears to suggest that a lower 

guess for demand actually improves customer service!  Prima facie, therefore, guessing a low 

value of demand appears to be doing something good.  But such inference is shortsighted and 

most misleading.  More seriously, this is not a defect in the model or its analysis.  

Recall that our objective of setting up the (s, Q) model to help find a rational way to 

manage inventories when demand is stochastic included spelling out the objective first—that of 

minimizing (1), the expected total cost/unit time.  This total cost included three components—the 

holding cost, the replenishment cost, and the shortage cost.  At least for this model, therefore, 

maximizing customer service per se was not the objective.  Customer service (F(s)) enters into 

(1) via Cs (= π1(1 – F(s))), the cost of short shipment.  If one requires the final (s, Q) solution to 

assure a high level of customer service, one would need to use a large value for π1.  Thus, like in 

any optimization, one must be clear about the objective—where does he want to put priority? 
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Conclusions 

This study has investigated the value of incorporating Bayesian learning into the popular 

(s, Q) model for managing inventories when demand is stochastic. The study finds that one can 

indeed make a decent start by the Bayesian approach—and stay the course nearly optimally—

while upholding a target service level by suitably selecting costs and also keeping the expected 

operating cost/unit time minimum. Specifically, this study uncovers the high value in continually 

updating the decisions (a) ―when to order‖, and (b) ―how much to order‖, rather than sticking to 

the initial guess for the demand average, as is frequently practiced. 

This work utilized an orthogonal array experimental framework to determine the 

sensitivity of the two performances (responses)--% service level and total expected cost.  For this 

two working levels for each of the factors—monthly demand (a), holding cost (h), shortage cost 

(π1) and order cost (K) were selected and a L8 array was adopted to guide the computations.  

Furthermore, importantly, myopic estimate of true demand would surely yield suboptimal EC.    

These deductions—typically unavailable to the inventory manager—suggest that it would 

be wise to spend effort in optimally setting the reorder point s
*
 and order quantity Q

*
 before one 

sets out to declare the operational policies to cope with stochastic demand.  
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