
 1 

Heuristic to allocate intermediate buffer storage 

capacities in a production line subject to machine 

breakdowns 

 

 

Mario C. Vélez-Gallego (marvelez@eafit.edu.co) 

Departamento de Ingeniería de Producción, Universidad EAFIT 

Carrera 49 7 sur 50, Medellín, Colombia 

 

Jhull B. Jaramillo 

Departamento de Ingeniería de Producción, Universidad EAFIT 

Carrera 49 7 sur 50, Medellín, Colombia 

 

 

 

 

Abstract 
In this research proposal we consider a production line subject to random failures at each 

workstation and operating under a make-to-stock policy. Every time a workstation fails, a 

corrective maintenance activity is triggered to repair the workstation. In order to palliate 

the effect of the random failures in the performance of the system, intermediate buffers 

are placed in-between workstations. An inventory holding cost is associated to each 

buffer. The research objective in this work is to allocate capacity to each intermediate 

buffer in the line so that the average cost per time unit is minimized while the average 

service level is kept above a minimum pre-specified value. In this paper we assume that 

unsatisfied demand is lost and the service level is defined as the long term proportion of 

satisfied demand. A greedy simulation–based heuristic is presented to find a feasible 

solution to the problem. 
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Introduction 

As stated in (Rezg et al. 2008), in order to minimize the impact of stopped production 

caused by repair activities inventory control decisions must be made based not only on 

the expected demand and desired service level, but also on the availability of the 

machines in the line. As of today academic literature has dealt mostly with production 

systems comprised of a single machine, with much less attention paid to more complex 

systems such as flow shops or job shops. In practice, however, production and 

maintenance professionals have to deal with much more complex systems for which there 

are no available models and tools to support the complex decisions they have to make. 

The aim of this research is to develop a more general model that helps practitioners in 

allocating intermediate buffer capacities in a more general production setting without 

imposing restrictions on the distribution of the random variables involved. In this paper 
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we consider a production system organized as an assembly system with finite capacity 

buffers in-between workstations and at both ends of the line. The workstations are subject 

to random failures that trigger a corrective maintenance procedure. These corrective 

maintenance actions have random durations. At each buffer there is an inventory holding 

cost that increases monotonically with the stage of the process; this is, the earlier the 

stage in the production line the lower the inventory holding cost. The production system 

under study is operated under a push strategy and is subject to a random demand. If there 

is no inventory of finished product upon arrival of a customer order, the demand 

associated with that order is considered as lost sales. The research problem we address in 

this paper is to find the sizes of the buffers in-between workstation so that the total 

relevant cost is minimized while the probability of a stock out is kept below a given 

minimum value. In this work we exclude from the analysis the buffers at both ends of the 

production system (i.e. buffers containing raw materials and finished goods). We assume 

that these buffers are of infinite capacity and that raw materials are always available for 

processing. More formally, let Π={M, D, B} be an arbitrary production system (i.e. an 

assembly line) comprised of a set of machines (i.e. M), some stochastic process D that 

represents the demand of finished goods that is observed at the final buffer in the system 

(i.e. finished goods), and a set of intermediate buffers (i.e. B). We assume that the 

probability density functions of the process times, times between failures and repair times 

are known for each machine mM. We also assume that the stochastic process D that 

represents the demand in the system is known in advance. Let N and H be two vectors 

containing the sizes and unitary holding costs associated with buffer set B, and let ni and 

hi be the size and unitary holding cost of buffer iB respectively. As we assume that 

vector H is known in advance, the decision variables we deal with in this research are the 

buffer sizes (i.e. vector N). Let C(N) be the average cost per time unit if the system 

operates with buffer sizes in N, and let θ(N) be the average service level observed in the 

system, defined as the long term proportion of demand units that are satisfied from the 

finished good inventory if the system operates with buffer sizes in N. The objective of 

this research is to find a vector N* so that C(N*) is minimized while θ(N*) is kept above 

a minimum pre-specified value ϕ. In the remainder of this paper, the vector N will be 

referred to as the solution to the problem under study. 

 

Literature Review 

The simultaneous consideration of both inventory control and machine reliability has 

become an important research area in the recent years. Recent approaches for the single 

machine case include (Chelbi and Ait-Kadi 2004, Gharbi et al. 2007, Rezg et al. 2005, 

Rezg et al. 2008); where mathematical models are developed under the assumption of 

both lost sales and backlogs. In such references the authors propose analytical models to 

find the buffer size and the frequency of preventive maintenance activities so that the 

total average cost per time unit is minimized. More general approaches extend the 

problem to a production line with intermediate buffers are found in (Demir et al. 2010, 

Dolgui et al. 2002, Nahas et al. 2006, Nourelfath et al. 2005). In (Dolgui et al. 2002) the 

authors propose a genetic algorithm (GA) to allocate buffer capacities in a production 

line under the assumptions of deterministic processing times and exponentially 

distributed failure and repair times. Here the authors propose an aggregation approach to 

evaluate tentative allocation of buffer capacities and a GA to minimize the average 
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steady-state inventory cost. In (Nourelfath et al. 2005) the authors present a variant of the 

problem in which for each workstation in the production line there are several versions 

available in the market, each with a different production rate, availability and price. The 

objective is to maximize the throughput of the production system maintaining the total 

cost below a certain given value. In (Nahas et al. 2006) a local search heuristic is used to 

maximize the throughput of a production line by approximating the flow of discrete parts 

in the production line by a continuous flow. More recently a tabu search solution 

approach was proposed in (Demir et al. 2010) to solve the same problem as in (Nahas et 

al. 2006) presenting better results with respect to computational cost. 

In (Massim et al. 2010) an optimization algorithm is proposed to determine an 

appropriate buffer storage size in order to reduce manufacturing costs while maintaining 

a desirable production rate. In (Zequeira et al. 2004) and (Radhoui et al. 2009) a 

mathematical model is developed for a manufacturing system that considers random 

failures and the production of non-conforming parts. The model aims at deciding whether 

or not to undertake maintenance activities with the objective of ensuring a continuous 

supply of finished goods while minimizing the expected total cost per unit time. Optimal 

buffer allocation in an environment with deterministic (i.e. constant) production rates and 

geometrically distributed times to failure and to repair is considered in (Shi and Gershwin 

2009). A mathematical model with non-linear constraints is proposed along with and an 

algorithm for solving the model. A simulated annealing approach for solving the buffer 

allocation problem in reliable production lines is presented in (Spinellis and 

Papadopoulos 2000). In this work the authors solve the problem with the objective of 

maximizing the average throughput of the line. Similarly, a tabu search approach is 

proposed in (Demir et al. 2012) for the problem of buffer allocation in a production line 

with unreliable machines with the objective of maximizing the throughput. In (Zequeira 

et al. 2008) periods between preventive maintenance activities are considered. In (Amiri 

and Mohtashami 2000) a simulation model was developed to solve the problem of buffer 

allocation in unreliable production systems under general probability density functions 

for the process times, the time between failures and the repair times. A GA approach 

combined with a line search technique was proposed for the objective of maximizing the 

throughput of the system. In this research we consider a problem similar to that 

considered in (Amiri and Mohtashami 2000). The differences between their work and 

ours is in that (1) we assume that the inventory holding cost is different for each buffer, 

and (2) the objective in our work is to minimize the average cost per time unit rather than 

maximizing the system’s throughput. To the best of our knowledge there is no published 

work that considers the problem we address in this paper. 

 

Solution Approach 

The proposed solution approach is a simulation-based greedy heuristic that starts from an 

initial solution N0 with arbitrary buffer sizes satisfying the only condition that these sizes 

are small enough so that the solution is unfeasible with respect to θ(N0). At iteration k the 

proposed heuristic transforms Nk into Nk+1 by increasing ni*Nk by Δ units. If we let 

Nk{i,Δ} be a new solution obtained from Nk by increasing ni in Δ size units, then 

i*=argmin{mi|iNk} and mi is computed as in equation (1). 
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 As the initial solution N0 is unfeasible with respect to θ(N0) (i.e. θ(N0) < ϕ), at 

every iteration during the execution of the algorithm, one buffer size is increased by Δ 

units until at some iteration k the value of θ(Nk) is greater than or equal to ϕ for the first 

time. At this point the algorithm stops with a feasible solution to the problem. To select 

the buffer that will be increased in capacity, a marginal cost per service level unit is 

estimated for every buffer in the system. This marginal cost per service level unit is 

computed for every buffer in B (i.e. mi) and computed as in equation (1). The buffer with 

the lowest marginal cost (i.e. i*) is selected and its size is increased by Δ size units. This 

process continues until the objective service level value (i.e. ϕ) is reached. Let x ← S(N) 

be a function that returns in x the expected value of the service level if the production 

system under study is operated with the buffer sizes in N, and let y ← C(N) be a similar 

function that returns in y the expected value of the cost per time unit. The pseudocode for 

the proposed solution approach follows. 

 
 N*  H(M, D, ϕ, Δ) 

  k  0 

  Nk  {n1,n2,…} 

  S0  S(N0), C0  C(N0) 

  while Sk < ϕ do 

   i*  argmax{mi|i ∈ Nk} 

   Nk+1  Nk{i*,Δ} 

   Sk+1  S(Nk+1), Ck+1  C(Nk+1) 

   k  k + 1 

  end 

  N*  Nk 

 end 

 

Computational Experiments 

To test the performance of the proposed heuristic we used as a test instance the assembly 

line proposed in (Amiri and Mohtashami 2000) and depicted in Figure 1, where the 

circles represent the machines and the triangles represent the intermediate buffers.  

 

 
Figure 1. Production system used for testing 

 

 The system used for testing is comprised of 17 buffers and 18 machines. The 

density functions of the process times, times between failures and repair times are 
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presented in Table 1. The letters E, G and W represent the exponential, gamma and 

weibull density functions respectively. 

 
Table 1. Description of the machines in the production system used for testing 

Station Process time Time between failures Repair time 

1 W(20,10,2) W(1000,70,20) G(1000,250,80) 

2 W(25,11,4) W(9000,200,18) G(1200,250,80) 

3 W(30,11,4) W(9500,200,18) G(200,250,80) 

4 W(20,10,6) W(9000,200,18) G(1250,250,80) 

5 W(35,4,3) W(15000,130,20) G(400,300,52) 

6 W(37,9,6) W(17000,240,90) G(2354,300,52) 

7 W(36,10,6) W(18000,240,90) G(2000,325,52) 

8 W(40,9,6) W(1700,240,90) G(2000,300,52) 

9 W(30,11,9) W(11000,350,18) G(500,300,52) 

10 W(45,16,9) W(9000,180,40) G(700,300,52) 

11 W(46,12,9) W(9000,180,40) G(756,300,52) 

12 W(48,11,12) W(9400,140,70) G(730,300,52) 

13 E(40) W(12000,200,80) G(1500,300,52) 

14 W(44,17,9) W(8650,180,40) G(700,300,52) 

15 W(27,12,10) W(8100,300,25) G(2659,140,60) 

16 E(43) W(8230,250,30) G(2768,160,65) 

17 W(26,12,10) W(7700,324,25) G(2546,140,60) 

18 W(33,14,10) W(7900,400,25) G(2434,143,60) 

 

 As per the buffers, the instance proposed in (Amiri & Mohtashami n.d.) includes a 

buffer size that we used as the initial solution (i.e. N0). Since the problem addressed in the 

above mentioned reference does not consider different holding cost for the buffers, we 

assigned an arbitrary unitary holding cost for each buffer that increases with the stage of 

the buffer in the system. A summary of the relevant buffer information is presented in 

Table 2. For the stochastic process D that models the observed demand at the end of the 

production system we assumed that customer orders arrive according to a homogeneous 

Poisson process of rate λ and that each arriving customer order if for one unit. For testing 

purposes the rate λ was established arbitrarily as λ=0.00702 customer orders per time unit. 

 
Table 2. Description of the buffer set used for testing 

Buffer i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

ni 200 180 250 170 200 240 160 210 150 150 220 220 140 140 230 200 150 

hi 1 1 1 1 2 2 2 2 3 3 3 3 4 4 5 6 7 

 

 The proposed algorithm was implemented in Visual Basic for Applications® 

(VBA) and executed on a machine equipped with four processors Intel® Core i7 and 6 

GB of memory running Windows 7 at 64 bits. As per the parameters of the algorithm we 

used ϕ=0.95 and Δ=10 size units. The computational time required by the algorithm to 

terminate for this test instance was of 41640 seconds (i.e. 11.56 hours). The evolution of 

the service level as the heuristic evolves searching for a feasible solution is depicted in 

Figure 2. As it can be seen in the figure, the expected value of the service level is not 

exactly ϕ=0.95 upon termination. This is because the test for whether or not the system 

has reached the pre-specified service level value is a statistical test. The algorithm stops 

when there is no statistical evidence that the true service level value is strictly below ϕ. In 
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a similar manner, Figure 3 depicts the evolution of the average cost per time unit as the 

heuristic evolves in time. 

 

 
Figure 2. Evolution of the service level value 

 

 
Figure 3. Evolution of the average cost per time unit 

 

 A comparison between the initial and final solutions is presented in Table 3, 

where N0 and NF represent the size vectors for the initial and final solutions respectively, 
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respect to the initial size. 

 
Table 3. Initial and final solutions 

Buffer i N0 NF %Gap 

1 200 220 10,00% 

2 180 220 22,22% 

3 250 270 8,00% 

4 170 190 11,76% 

5 200 220 10,00% 

6 240 260 8,33% 

7 160 200 25,00% 

8 210 280 33,33% 

9 150 190 26,67% 

10 150 190 26,67% 

11 220 250 13,64% 

12 220 240 9,09% 

13 140 190 35,71% 

14 140 190 35,71% 

15 230 260 13,04% 

16 200 210 5,00% 

17 550 550 0,00% 

 

Conclusion 

This paper deals with the problem of allocating intermediate buffer storage capacities in a 

production system subject to random failures and process times. Different unitary holding 

costs were considered for each buffer. The objective of this research is to minimize the 

average cost per time unit while maintaining the average service level above a certain 

pre-specified value. A greedy heuristic was proposed to dynamically increase the size of 

one buffer at a time until the objective service level value is reached. In order to estimate 

the average cost per time unit and service level, a discrete-event simulation model is 

proposed. To assess the performance of the proposed approach, a test instance from the 

literature was used. The proposed heuristic effectively solved the test instance within a 

reasonable amount of time. Further computational experiments need to be conducted with 

several test instances of different size and complexity in order to better understand the 

performance of the heuristic under these different circumstances. 
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