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Abstract

In this research proposal we consider a production line subject to random failures at each
workstation and operating under a make-to-stock policy. Every time a workstation fails, a
corrective maintenance activity is triggered to repair the workstation. In order to palliate
the effect of the random failures in the performance of the system, intermediate buffers
are placed in-between workstations. An inventory holding cost is associated to each
buffer. The research objective in this work is to allocate capacity to each intermediate
buffer in the line so that the average cost per time unit is minimized while the average
service level is kept above a minimum pre-specified value. In this paper we assume that
unsatisfied demand is lost and the service level is defined as the long term proportion of
satisfied demand. A greedy simulation—based heuristic is presented to find a feasible
solution to the problem.
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Introduction

As stated in (Rezg et al. 2008), in order to minimize the impact of stopped production
caused by repair activities inventory control decisions must be made based not only on
the expected demand and desired service level, but also on the availability of the
machines in the line. As of today academic literature has dealt mostly with production
systems comprised of a single machine, with much less attention paid to more complex
systems such as flow shops or job shops. In practice, however, production and
maintenance professionals have to deal with much more complex systems for which there
are no available models and tools to support the complex decisions they have to make.
The aim of this research is to develop a more general model that helps practitioners in
allocating intermediate buffer capacities in a more general production setting without
imposing restrictions on the distribution of the random variables involved. In this paper
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we consider a production system organized as an assembly system with finite capacity
buffers in-between workstations and at both ends of the line. The workstations are subject
to random failures that trigger a corrective maintenance procedure. These corrective
maintenance actions have random durations. At each buffer there is an inventory holding
cost that increases monotonically with the stage of the process; this is, the earlier the
stage in the production line the lower the inventory holding cost. The production system
under study is operated under a push strategy and is subject to a random demand. If there
is no inventory of finished product upon arrival of a customer order, the demand
associated with that order is considered as lost sales. The research problem we address in
this paper is to find the sizes of the buffers in-between workstation so that the total
relevant cost is minimized while the probability of a stock out is kept below a given
minimum value. In this work we exclude from the analysis the buffers at both ends of the
production system (i.e. buffers containing raw materials and finished goods). We assume
that these buffers are of infinite capacity and that raw materials are always available for
processing. More formally, let II={M, D, B} be an arbitrary production system (i.e. an
assembly line) comprised of a set of machines (i.e. M), some stochastic process D that
represents the demand of finished goods that is observed at the final buffer in the system
(i.e. finished goods), and a set of intermediate buffers (i.e. B). We assume that the
probability density functions of the process times, times between failures and repair times
are known for each machine me M. We also assume that the stochastic process D that
represents the demand in the system is known in advance. Let N and H be two vectors
containing the sizes and unitary holding costs associated with buffer set B, and let n; and
h; be the size and unitary holding cost of buffer i€ B respectively. As we assume that
vector H is known in advance, the decision variables we deal with in this research are the
buffer sizes (i.e. vector N). Let C(N) be the average cost per time unit if the system
operates with buffer sizes in N, and let 6(N) be the average service level observed in the
system, defined as the long term proportion of demand units that are satisfied from the
finished good inventory if the system operates with buffer sizes in N. The objective of
this research is to find a vector N* so that C(N*) is minimized while O(N*) is kept above
a minimum pre-specified value ¢. In the remainder of this paper, the vector N will be
referred to as the solution to the problem under study.

Literature Review

The simultaneous consideration of both inventory control and machine reliability has
become an important research area in the recent years. Recent approaches for the single
machine case include (Chelbi and Ait-Kadi 2004, Gharbi et al. 2007, Rezg et al. 2005,
Rezg et al. 2008); where mathematical models are developed under the assumption of
both lost sales and backlogs. In such references the authors propose analytical models to
find the buffer size and the frequency of preventive maintenance activities so that the
total average cost per time unit is minimized. More general approaches extend the
problem to a production line with intermediate buffers are found in (Demir et al. 2010,
Dolgui et al. 2002, Nahas et al. 2006, Nourelfath et al. 2005). In (Dolgui et al. 2002) the
authors propose a genetic algorithm (GA) to allocate buffer capacities in a production
line under the assumptions of deterministic processing times and exponentially
distributed failure and repair times. Here the authors propose an aggregation approach to
evaluate tentative allocation of buffer capacities and a GA to minimize the average



steady-state inventory cost. In (Nourelfath et al. 2005) the authors present a variant of the
problem in which for each workstation in the production line there are several versions
available in the market, each with a different production rate, availability and price. The
objective is to maximize the throughput of the production system maintaining the total
cost below a certain given value. In (Nahas et al. 2006) a local search heuristic is used to
maximize the throughput of a production line by approximating the flow of discrete parts
in the production line by a continuous flow. More recently a tabu search solution
approach was proposed in (Demir et al. 2010) to solve the same problem as in (Nahas et
al. 2006) presenting better results with respect to computational cost.

In (Massim et al. 2010) an optimization algorithm is proposed to determine an
appropriate buffer storage size in order to reduce manufacturing costs while maintaining
a desirable production rate. In (Zequeira et al. 2004) and (Radhoui et al. 2009) a
mathematical model is developed for a manufacturing system that considers random
failures and the production of non-conforming parts. The model aims at deciding whether
or not to undertake maintenance activities with the objective of ensuring a continuous
supply of finished goods while minimizing the expected total cost per unit time. Optimal
buffer allocation in an environment with deterministic (i.e. constant) production rates and
geometrically distributed times to failure and to repair is considered in (Shi and Gershwin
2009). A mathematical model with non-linear constraints is proposed along with and an
algorithm for solving the model. A simulated annealing approach for solving the buffer
allocation problem in reliable production lines is presented in (Spinellis and
Papadopoulos 2000). In this work the authors solve the problem with the objective of
maximizing the average throughput of the line. Similarly, a tabu search approach is
proposed in (Demir et al. 2012) for the problem of buffer allocation in a production line
with unreliable machines with the objective of maximizing the throughput. In (Zequeira
et al. 2008) periods between preventive maintenance activities are considered. In (Amiri
and Mohtashami 2000) a simulation model was developed to solve the problem of buffer
allocation in unreliable production systems under general probability density functions
for the process times, the time between failures and the repair times. A GA approach
combined with a line search technique was proposed for the objective of maximizing the
throughput of the system. In this research we consider a problem similar to that
considered in (Amiri and Mohtashami 2000). The differences between their work and
ours is in that (1) we assume that the inventory holding cost is different for each buffer,
and (2) the objective in our work is to minimize the average cost per time unit rather than
maximizing the system’s throughput. To the best of our knowledge there is no published
work that considers the problem we address in this paper.

Solution Approach

The proposed solution approach is a simulation-based greedy heuristic that starts from an
initial solution Ny with arbitrary buffer sizes satisfying the only condition that these sizes
are small enough so that the solution is unfeasible with respect to 6(No). At iteration k the
proposed heuristic transforms N into Ny+; by increasing nixe N¢ by A units. If we let
Ni{i,A} be a new solution obtained from Ny by increasing nj in A size units, then
i*=argmin{m;|i € N¢} and m; is computed as in equation (1).
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As the initial solution Ny is unfeasible with respect to 0(No) (i.e. 6(Ng) < ¢), at
every iteration during the execution of the algorithm, one buffer size is increased by A
units until at some iteration k the value of 6(Ny) is greater than or equal to ¢ for the first
time. At this point the algorithm stops with a feasible solution to the problem. To select
the buffer that will be increased in capacity, a marginal cost per service level unit is
estimated for every buffer in the system. This marginal cost per service level unit is
computed for every buffer in B (i.e. m;) and computed as in equation (1). The buffer with
the lowest marginal cost (i.e. i*) is selected and its size is increased by A size units. This
process continues until the objective service level value (i.e. ¢) is reached. Let x « S(N)
be a function that returns in x the expected value of the service level if the production
system under study is operated with the buffer sizes in N, and let y « C(N) be a similar
function that returns in y the expected value of the cost per time unit. The pseudocode for
the proposed solution approach follows.

N* < H(M, D, ¢, A)

k «< O

Ny < {n;,n,,..}

Sg <= S(Ng), Cyu « C(Np)

while S, < ¢ do
i* ¢« argmax{m;|i EN;}
Ny ¢ Ni{i*,A}
Spi1 ¢ S(Nyy1), Crir ¢ C(Nyyq)
k « k + 1

end

N* <« Ny
end

Computational Experiments

To test the performance of the proposed heuristic we used as a test instance the assembly
line proposed in (Amiri and Mohtashami 2000) and depicted in Figure 1, where the
circles represent the machines and the triangles represent the intermediate buffers.
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Figure 1. Production system used for testing

The system used for testing is comprised of 17 buffers and 18 machines. The
density functions of the process times, times between failures and repair times are



presented in Table 1. The letters E, G and W represent the exponential, gamma and
weibull density functions respectively.

Table 1. Description of the machines in the production system used for testing

Station | Process time Time between failures Repair time
1 W(20,10,2) W(1000,70,20) G(1000,250,80)
2 W(25,11,4) W(9000,200,18) G(1200,250,80)
3 W(30,11,4) W(9500,200,18) G(200,250,80)
4 W(20,10,6) W(9000,200,18) G(1250,250,80)
5 W(35,4,3) W(15000,130,20) G(400,300,52)
6 W(37,9,6) W(17000,240,90) G(2354,300,52)
7 W(36,10,6) \W(18000,240,90) G(2000,325,52)
8 W(40,9,6) W(1700,240,90) G(2000,300,52)
9 W(30,11,9) W(11000,350,18) G(500,300,52)
10 W(45,16,9) W(9000,180,40) G(700,300,52)
11 W(46,12,9) W(9000,180,40) G(756,300,52)
12 W(48,11,12) W(9400,140,70) G(730,300,52)
13 E(40) W(12000,200,80) G(1500,300,52)
14 W(44,17,9) W(8650,180,40) G(700,300,52)
15 W(27,12,10) W(8100,300,25) G(2659,140,60)
16 E(43) W(8230,250,30) G(2768,160,65)
17 W(26,12,10) W(7700,324,25) G(2546,140,60)
18 W(33,14,10) W(7900,400,25) G(2434,143,60)

As per the buffers, the instance proposed in (Amiri & Mohtashami n.d.) includes a
buffer size that we used as the initial solution (i.e. No). Since the problem addressed in the
above mentioned reference does not consider different holding cost for the buffers, we
assigned an arbitrary unitary holding cost for each buffer that increases with the stage of
the buffer in the system. A summary of the relevant buffer information is presented in
Table 2. For the stochastic process D that models the observed demand at the end of the
production system we assumed that customer orders arrive according to a homogeneous
Poisson process of rate A and that each arriving customer order if for one unit. For testing
purposes the rate A was established arbitrarily as A=0.00702 customer orders per time unit.

Table 2. Description of the buffer set used for testing

Bufferi | 1 | 2 | 3] 4|5 |6 |7 |89 ]10]11|12|13]|14|15|16]17
n; 200180 250|170 |200 | 240|160 | 210|150 150|220 | 220 | 140 | 140 | 230 | 200 | 150
h; 1]1]1|1]2])2 2|2 |3]3]|]3|3|4]|4 5|67

The proposed algorithm was implemented in Visual Basic for Applications®
(VBA) and executed on a machine equipped with four processors Intel® Core i7 and 6
GB of memory running Windows 7 at 64 bits. As per the parameters of the algorithm we
used ¢$=0.95 and A=10 size units. The computational time required by the algorithm to
terminate for this test instance was of 41640 seconds (i.e. 11.56 hours). The evolution of
the service level as the heuristic evolves searching for a feasible solution is depicted in
Figure 2. As it can be seen in the figure, the expected value of the service level is not
exactly $=0.95 upon termination. This is because the test for whether or not the system
has reached the pre-specified service level value is a statistical test. The algorithm stops
when there is no statistical evidence that the true service level value is strictly below ¢. In



a similar manner, Figure 3 depicts the evolution of the average cost per time unit as the
heuristic evolves in time.
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Figure 2. Evolution of the service level value
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Figure 3. Evolution of the average cost per time unit

A comparison between the initial and final solutions is presented in Table 3,
where No and Ng represent the size vectors for the initial and final solutions respectively,
while %Gap is the relative increment in size observed by each buffer, computed with



respect to the initial size.

Table 3. Initial and final solutions
Bufferi | Ng Ne | %Gap

1 200 | 220 | 10,00%

2 180 | 220 | 22,22%

3 250 | 270 8,00%

4 170 | 190 | 11,76%

5 200 | 220 | 10,00%

6

7

8

240 | 260 8,33%
160 | 200 | 25,00%
210 | 280 | 33,33%

9 150 | 190 | 26,67%
10 150 | 190 | 26,67%
11 220 | 250 | 13,64%
12 220 | 240 9,09%
13 140 | 190 | 35,71%
14 140 | 190 | 35,71%
15 230 | 260 | 13,04%
16 200 | 210 5,00%
17 550 | 550 0,00%

Conclusion

This paper deals with the problem of allocating intermediate buffer storage capacities in a
production system subject to random failures and process times. Different unitary holding
costs were considered for each buffer. The objective of this research is to minimize the
average cost per time unit while maintaining the average service level above a certain
pre-specified value. A greedy heuristic was proposed to dynamically increase the size of
one buffer at a time until the objective service level value is reached. In order to estimate
the average cost per time unit and service level, a discrete-event simulation model is
proposed. To assess the performance of the proposed approach, a test instance from the
literature was used. The proposed heuristic effectively solved the test instance within a
reasonable amount of time. Further computational experiments need to be conducted with
several test instances of different size and complexity in order to better understand the
performance of the heuristic under these different circumstances.
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