
A novel approach to finding feasible solutions to personnel

rostering problems

Gareth Beddoe and Sanja Petrovic

Automated Scheduling, Optimisation, and Planning Research Group,
School of Computer Science and Information Technology, University of Nottingham,

Jubilee Campus, Nottingham NG8 1BB, United Kingdom
{ grb | sxp }@cs.nott.ac.uk

Abstract. Classical meta-heuristic methods for solving rostering problems focus on defin-
ing measures of roster quality. Here we present a new case-based reasoning approach to
generating repairs of hard constraint violations using expert-human experience. This ap-
proach is used to guide heuristic constraint satisfaction algorithms, eliminating the need
to explicitly define search objectives.

1 Introduction

Employee rostering problems are often highly constrained and difficult to solve manually [9].
Legal, management, operational, and staff requirements are often conflicting and must be taken
into account when making rostering decisions. For example, management requirements for cover
and skill mix conflict with the maximum working hours allowed (by law and contract) as well
as individual staff preferences. Nevertheless, rostering experts develop strategies for balancing
these conflicts and are able to solve most problems. This paper describes a constraint satisfaction
approach to automated rostering that draws on stored experience of human rostering experts.

A number of different operational research approaches have been explored for solving em-
ployee rostering problems using techniques including linear and integer programming [3, 5, 20,
23], goal programming [2, 6], and constraint satisfaction techniques [1, 9, 14, 15]. Scott and Simp-
son [22] combined case-based reasoning and constraint logic programming by storing shift pat-
terns used for the construction of rosters. CBR has been successfully used for machine scheduling
problems in [17, 21]. A number of meta-heuristic methods have been developed with some suc-
cess using methods such as (but not limited to) tabu search [7, 10, 11], simulated annealing and
genetic algorithms [4], and memetic algorithms [8]. These methods explore the search space
through neighbourhoods of solutions defined using extensive domain knowledge and experimen-
tal trial and error. The knowledge capturing technique described here aims to provide a means to
intelligently and dynamically define neighbourhoods tailored to the specific constraint violations
found in individual problems.

Case-based reasoning (CBR) [13] is an artificial intelligence methodology that imitates human
style decision making by solving new problems using knowledge about the solutions to similar
problems. CBR methodology operates under the premise that similar problems will require
similar solutions. Previous problems and solutions are stored in a case-base and accessed during
reasoning by processes of identification, retrieval, adaptation, and storage. The identification and
retrieval phases search the case-base for cases containing problems that are the most similar to
the current problem in terms of a set of characteristic indices. The solutions from these retreived
cases are then adapted to the context of the current problem. If a new solution might be useful
for solving problems in the future then it is stored as a new case in the case-base.

CBR is used here for the rostering problem as a means by which to capture the rostering
knowledge of human experts by storing a history of constraint violations and their corresponding

repairs [19]. The rostering problem is presented as a constraint satisfaction problem whereby a
roster is defined as feasible if it does not violate any of a set of hard constraints. Two itera-
tive heuristic constraint satisfaction algorithms are presented that attempt to find feasibility by
direct repair of individual constraint violations within the roster. The first algorithm repairs con-
straint violations randomly within a tabu search framework while the second uses the rostering
experience stored within the case-base. A third, hybrid, approach uses tabu-lists and case-based
repair generation. A number of experiments were designed to investigate the performance of
these algorithms.

The problem investigated here is that of rostering nurses in the Ophthamological Ward at
the Queens Medical Centre University Hospital Trust (QMC) in Nottingham, United Kingdom.
In Section 2 the rostering problem at the QMC is formulated and in Section 3 an overview of
the case-based reasoning framework described in [18, 19] is given. The constraint satisfaction
algorithms are described in Section 4 incorporating case-based repair generation and tabu-list
concepts. Sections 5 and gives the results of experiments using the real-world data from the
QMC. A discussion of the benefits of the methods proposed is given in Section 6.

2 Problem Formulation

We define the nurse rostering problem as the ordered pair:

R = 〈N,C〉 ,
where N = {nursei : 0 ≤ i < n} is the set of n nurses to be rostered and C is a set of constraints.

Nurses in the QMC ward have one of four qualification levels. These are, in descending
order of seniority: registered (RN), enrolled (EN), auxiliary (AN), and student (SN). RNs are
the most qualified and have had extensive practical and management training whereas ENs are
mainly trained in the practical aspects of nursing. ANs are unqualified nurses who can perform
basic duties and SNs are currently training to be either RNs or ENs. These real nurse types are
grouped here using three additional qualification types. The classification XN denotes a nurse
of any type. RNs, ENs, and ANs are grouped together as employed (PN) and RNs and ENs
as qualified (QN). In addition to these basic qualifications nurses can also recieve ward-specific
training (in this case eye training - denoted ET) and a grade, ranging from A to I, is determined
by a combination of qualification, specialty training, and the amount of practical experience they
have. The gender ((M)ale or (F)emale) and international status ((I)nternational or (H)ome) of
nurses is also taken into account when making rostering decisions.

Here a nurse is denoted by the 4-tuple:

nursei = 〈NurseTypei, hoursi, NRi, NPi〉 ,
where NurseTypei = {fi,1 . . . fi,5} is an array of descriptive features where

fi,1 ∈ {RN,EN,AN, SN,QN,PN,XN}
is the nurse’s qualification. The QN, PN, and XN qualifications are included because the
NurseType variable is also used to describe general skill requirements within constraints and
violations. The remaining elements, fi,2 . . . fi,5, describe the gender, international status, spe-
cialty training, and grade of the nurse. The number of hours the nurse is contracted to work in
a week (normally 37.5) is denoted by hoursi ∈ R

+.
The set of assignment variables:

NRi = {si,j : 0 ≤ j < period}

2

represents the shift assignments for nursei on day j over the number of days for which the roster
has been constructed, denoted by period.

The set of variables:

NPi = {pi,j : 0 ≤ j < period}
represents the preferred shift assignments of nursei on day j. Preferred assignments are es-
tablished by a process of pre-rostering consultation and are used as the initial instantiation of
the shift assignment variables (i.e. initially NRi = PRi∀i). The variables si,j and pi,j can take
values from the set {UNASSIGNED, EARLY, LATE, NIGHT, OFF}.

The set C consists of a number of (hard) constraints of the following types:

Cover constraints define the skill mixes required for different shifts. A minimum number of
nurses of a particular feature set (represented by the NurseType variable) must be assigned
to particular shifts. For example, the early shift requires 4 QN’s;

MaxDaysOn constraints limit the number of days that nurses may work in a row. For the
QMC ward this is generally 5 for all nurses;

MinDaysOn constraints define the minimum number of days that nurses may work succesively;
Succession constraints define illegal shift combinations for nurses matching a feature set. A

NIGHT shift followed by an EARLY shift is one such combination;
Totals constraints define the maximum number of hours a nurse may work over a set time

period. For example, no nurse may work more than 75 hours in a fortnight.

When constraints are applied to N , they generate a set of violations of a type corresponding
to the constraint type. We define the problem instance spaces PR

v and PR
r as the set of constraint

violations in R and the possible repairs to the current roster R. An element violationα ∈ PR
v

stores the type of violation and the parameters relevant to it. Violations are denoted as follows:

CoverViolation(NurseType, day, shift): There are insufficient nurses of feature setNurseType
assigned to shift on day;

MaxDaysOnViolation(nursei, startDay, numDays): nursei is working too many shifts in a
row starting on startDay for numDays days;

MinDaysOnViolation(nursei, startDay, numDays): nursei is working too few shifts in a
row starting on startDay for numDays days;

SuccessionViolation(nursei, day): nursei has an illegal shift combination on days day and
day + 1;

TotalsViolation(nursei, startDay, endDay): nursei is working too many hours between days
startDay and endDay.

An element repairβ ∈ PR
r describes the type of repair and the nurses, days, and shift assign-

ments involved. They can be one of the following types:

Reassign(nursei, day, shift): Assign shift to nursei on day;
Swap(nursei, nursej , day): Interchange the shift assignments of nursei and nursej on day;
Switch(nursei, day1, day2): Interchange the shift assignements of nursei between days day1

and day2.

The sets PR
v and PR

r represent information relevant to a specific instance of a rostering
problem (an instantiation of R). The nurses, days, and shifts they describe refer only to those
specified by R. In order to store and reuse examples of previous violation/repair experiences
we need to define a generalised structure - one that is independent of any individual rostering
problem instance.

3

We define the case-base CB as a set of previously encountered violations and their corre-
sponding repairs. Figure 1 gives a graphical representation of the variables described in the
remainder of this section, and of the repair generation technique described in Section 3. This
figure emphasises the difference between variables that pertain to the current rostering prob-
lem and those generalised variables that must interact with the historical information in the
case-base.

Fig. 1. A graphical summary of the repair generation technique. After application of the repair a new
case can be stored using the generalised verions of both the violation and repair.

The case-baseCB = Wv×Wr whereWv is the space of stored violations (the problem history)
and Wr is the space of stored repairs (the solution history). Therefore a case cγ = (vγ , rγ) ∈ CB
where γ ∈ Γ . We define vγ and rγ as follows:

vγ = 〈V iolationTypeγ, V iolationIndicesγ〉
rγ = 〈RepairTypeγ, RepairIndicesγ〉

Here V iolationTypeγ and RepairTypeγ contain the type and necessary parameters de-
scribing violations and repairs independently of any problem instance. V iolationIndicesγ and
RepairIndicesγ store the feature information needed to identify similar problem instances dur-
ing case retrieval, and to generate repairs during case adaptation. The index sets are arrays
of statistical feature values. They are the characteristics of the problem identified as having
an influence on the decision making process. The violation indices include measures of roster
infeasibility, nurse utilisation and satisfaction, shift pattern statistics, and shift coverage, de-
pending on the specific type of violation. The repair indices are statistical information about

4

the parameters of the repair - the cover of shifts before and after the repair and the utilisation
and satisfaction of the nurses involved.

3 Case-based Repair Generation

The method described in this section generates repairs of constraint violations within a roster
using the generalised experience stored in the case-base. Key to the success of this method is
the notion of problem similarity. The method must first find the most similar problem in the
case-base to the current problem (i.e. the violation within the current roster). Having identified
the most similar violations the corresponding repairs must be adapted to the context of the
current roster. Using the notion of solution similarity and a set of simple rules, repairs are
generated that are as similar to the retrieved solution as possible. Following are the descriptions
of the retrieval process, whereby similar violations are identified, and the adaptation process for
generating repairs.

The retrieval process is split into two distinct searches of the case-base. The first search filters
the case-base to obtain cases containing violations that match the current problem in terms of
violation type and parameters. The second search ranks the restricted set of cases using the
similarity function Sim defined as follows:

Sim(IndexSeta, IndexSetb) =

(
1
I

I∑
i=1

wi × dist(indexai , indexbi)

)−1

,

where I is the number of elements in the index sets, wi are the index weights, and

dist(indexai , indexbi) =
∣∣∣∣ indexbi

−indexai

indexmaxi
−indexmini

∣∣∣∣ ,
where indexmaxi and indexmini are the maximum and minimum values of index i over the whole
case-base.

Hence, given a problem violationα, the retrieval algorithm comprises of these steps:

1. Generalise violationα to get vα = 〈V iolationTypeα, V iolationIndicesα〉 by generalising the
parameter information and calculating the violation indices with respect to the current
roster;

2. Choose cases caseγ = (vγ , rγ) ∈ CB such that:

V iolationTypeα = V iolationTypeγ ;

3. Rank these cases according to Sim(V iolationIndicesα, V iolationIndicesγ) .

This sorted set of cases is then passed to the adaptation process which is also seperated
into two phases. Initially, the method generates, using the data from the current roster, a set of
candidate repairs of the same type as in the retrieved case. The second stage involves ranking
these candidate repairs according to their similarity to the repair in the retrieved case. Here the
set of repair indices from the retrieved case is compared with the indices of the candidate repairs
using the Sim function.

The adaptation algorithm can be summarised as follows:

1. Consider the top ranking case case0 = (v0, r0) ;
2. Generate a set of repairs of type RepairType0 using all possible relevant combinations of

nurses and shifts from the roster. If no repairs can be generated then remove the top case
and goto 1;

5

3. Generalise this set by calculating the RepairIndicesβ for each repairβ ;
4. Rank the repairs according to Sim(RepairIndicesβ, RepairIndices0) .

To illustrate both these processes we shall describe a simple example (see the Appendix for
additional details). Consider the following roster (where E = EARLY, L = LATE, and U =
UNASSIGNED):

0 1 2 3 4 5 6
nurse0 E U U U L E E
nurse1 L L L U U L U
nurse2 U E E L E U L

Here nurse0 and nurse1 are eye-trained, registered, female, non-international, E-grade nurses
and nurse2 is an eye-trained, enrolled, female, non-international, D-grade nurse. Hence,NurseType0 =
NurseType1 = {RN,F,H,ET,E} and NurseType2 = {EN,F,H,ET,D}.

A single constraint is applied to the roster, requiring that a minimum of 1 qualified nurse
be assigned to every early shift. It can be seen that on day 3 there is no nurse assigned to the
early shift. Therefore the violation violationα = COV ER({QN, 0, 0, 0, 0}, 1, EARLY) needs to
be repaired (where 0 in the feature set indicates that a feature can take any value).

The violation is passed to the retrieval process where all the examples of cover violations
involving qualified nurses are identified in the case-base. Suppose, for this example, that three
such cases are found. These must then be ranked according to the similarity measure as follows:

Index Values Sim (score)
|PR

v | GSat GUO GUW Mag LSat LUO LUW
α 1 100.0 86.7 86.7 1 100.0 86.7 86.7 NA

case0 1 92.3 89.2 78.3 1 93.0 82.3 78.1 2.53
case1 2 86.2 73.9 68.9 1 44.0 80.2 80.1 1.36
case2 15 60.8 58.3 45.6 2 70.1 80.1 60.2 0.77

The repair information stored in case0 must now be adapted to create a repair of the current
violation. For this example case0 contains a (generalised) repair of type Reassign that uses a
nurse with NurseType = {RN,F,H,ET,E} who was originally assigned an UNASSIGNED
shift on the day of the repair. The adaptation process generates a set of reassign repairs using
nurses with the correct feature set and who are currently assigned UNASSIGNED on day 3.
From our roster we have two nurses with such a set and so two repairs are generated:

repaira = REASSIGN(nurse0, 3, EARLY) ;
repairb = REASSIGN(nurse1, 3, EARLY) .

We generalise these repairs by calculating index sets and compare them to the repair from
case0:

repair Index Values Sim (score)
SCOA SCOT SCNA SCNT Util SP

RepairIndices0 0 0 3 2 85.0 0 NA
repaira 0 0 2 2 80.0 1 6.00
repairb 0 0 2 2 100.0 4 2.67

Therefore the first repair, REASSIGN(nurse0, 3, EARLY), is returned as a solution. This
current problem solving episode can be added to the case-base by generalising both the violation
and repair, thus increasing the amount of experience stored.

6

4 Case-based Repair Generation for Constraint Satisfaction

In this section we shall describe three different heuristic constraint satisfaction algorithms. Two
of these algorithms will make use of the case-based repair generation methodology presented in
the previous section. Initially we have a roster that consists solely of the nurse’s individual shift
preferences. This roster violates a large number of constraints and the goal of the algorithms
presented here is to find a feasible solution - i.e. one which does not violate the stated constraints.

The three constraint satisfaction algorithms attempt to find feasible solutions by succesively
picking random violations and generating repairs. This approach differs from other heuristic
constraint satisfaction techniques which generally search for feasibility by considering when
particular instantiations of variables violate one or more constraints (e.g. [16]). The algorithms
described here are not intended to compete with other constraint satisfaction methods. We shall
simply use them to show the benefits that case-based repair generation can bring to a very
simple algorithm.

The process of generating repairs does not include any explicit measure of roster quality inso-
far as it does not attempt to minimise the number of violations in the roster after application (or
indeed to minimise the damage caused by repairs that generate new constraint violations). These
algorithms are therefore performing a search for feasibility without any explicit representation
of a search objective in the form of a function or otherwise.

We shall compare three different constraint satisfaction algorithms here. These algorithms
differ in the way they generate and choose repairs, and in the search diversification methods
that they employ. The first addresses constraint violations by randomly generating repairs and
utilises a tabu-list to avoid local optima. The second uses the case-based retrievel and adaptation
processes to repair randomly chosen violations and the third combines the case-based and tabu
list approaches.

4.1 Random Repair Generation with Tabu List (RRGTL)

This algorithm uses no problem solving knowledge when generating repairs but uses the idea
of tabu search proposed by Glover in [12]. A tabu-list of repairs is used to help the algorithm
avoid local optima in the number of constraint violations and a tenure is specified which sets
the length of the list (and therefore the number of iterations for which a stored repair will
be considered ’tabu’). Some help is given to the algorithm by ensuring that the parameters of
the violations, including the nurses, days, and shifts involved, are also included as parameters
of the repairs. Otherwise the choice of repair type (Reassign, Swap, or Switch) and the other
parameters involved is entirely random. No evaluation of the quality of repairs or the degree of
violation of the roster is used when deciding on repairs.

Given roster R = 〈N,C〉 and tabu list T with tenure t :

1. Generate PR
v by applying the constraints in C to N ;

2. Pick random element violationα ∈ PR
v ;

3. Randomly create repairβ using parameters of violationα as appropriate ;
4. If repairβ /∈ T Then apply repairβ to N Else goto 3 ;
5. Add repairβ to T and enforce tenure t ;
6. Generate PR

v by applying the constraints in C to N ;
7. If |PR

v | = 0 Then exit Else goto 2 .

4.2 Case-Based Repair Generation (CBRG)

Here the experience stored in a case-base is used to generate repairs. It is assumed, for the
experiments that follow, that the case-base has been well trained and contains sufficient examples

7

of a variety of different problem solving episodes. Again there is no objective function used to
choose repairs. The most similar repair from the most similar case is used at every iteration.
There is no method for diversification of the search in this algorithm.

Given roster R = 〈N,C〉 :

1. Generate PR
v by applying the constraints in C to N ;

2. Pick random element violationα ∈ PR
v ;

3. Generate repairβ using the case-based retrieval and adaptation methods ;
4. Apply repairβ to N ;
5. Generate PR

v by applying the constraints in C to N ;
6. If |PR

v | = 0 Then exit Else goto 2 .

4.3 Case-Based Repair Generation with Tabu List (CBRGTL)

This hybrid algorithm combines aspects of the previous two algorithms. The RRGTL algorithm
is not guided by any rostering knowledge as the repairs generated for each violation are random.
CBRG guides the search using the knowledge in the case-base but is unable to cope when
violations are repeatedly created - it will create the same repair for the violation each time it is
encountered. The diversification provided by the tabu-lists and the rostering knowledge stored
in the case-base are combined for the CBRGTL algorithm.

The algorithm includes an additional method of diversification. As well as storing a tabu list
of repairs it is possible to store cases to prevent their re-use within a specified tenure. When a
violation is encountered the method will retrieve the most similar case from the case-base and
then generate a repair. If the same repair has been carried out before then this is an indication
that the violation has reappeared during the repair of another violation. The tabu lists of repairs
and cases help the algorithm to find feasibility by avoiding situations where the search loops
between a number of conflicting constraints.

Given roster R = 〈N,C〉 and tabu lists TRepair and TCase with tenures tr and tc respec-
tively:

1. Generate PR
v by applying the constraints in C to N ;

2. Pick random element violationα ∈ PR
v ;

3. Retrieve the most similar case case0 ;
4. If case0 ∈ TCase Then discard case0 and goto 3 ;
5. Generate repair0 from case0 such that repair0 /∈ TRepair ;
6. Add case0 to TCase and repair0 to TRepair and enforce tenures tr and tc;
7. Apply repair0 to N ;
8. Generate PR

v by applying the constraints in C to N ;
9. If |PR

v | = 0 exit Else goto 2 .

5 Results

The three algorithms were tested on real-world data from the QMC using fourteen different
variants:

– Case-based repair generation with no tabu lists (CBRG);
– Case-based repair generation with tabu lists of repairs with tenures 10, 20, and 50 (CBRGTL-
R10, CBRGTL-R20, CBRGTL-R50);

– Case-based repair generation with tabu lists of cases with tenures 2, 5, and 10 (CBRGTL-C2,
CBRGTL-C5, CBRGTL-C10);

8

Table 1. Algorithm Performance

|P R
v | best |Iterations| NSat (%) #Feasible(/10)

CBRG 1.9 382 93.36 0

RRGTL-R10 2.7 462 63.54 7

RRGTL-R20 5.3 499 60.43 4

RRGTL-R50 3.4 498 61.96 4

CBRGTL-R10 0 196 93.08 10

CBRGTL-R20 0 106 95.43 10

CBRGTL-R50 0 96 95.94 10

CBRGTL-C2 0.1 94 92.02 9

CBRGTL-C5 0 89 91.55 10

CBRGTL-C10 0 105 92.46 10

CBRGTL-C2-R10 0 88 92.56 10

CBRGTL-C5-R10 0 92 90.99 10

CBRGTL-C2-R20 0 92 92.74 10

CBRGTL-C5-R20 0 86 91.71 10

– Case-based repair generation with tabu lists of cases with tenures 2 and 5, and tabu lists of
repairs with tenures 10 and 20, in all combinations (CBRGTL-C2-R10, CBRGTL-C5-R10,
CBRGTL-C2-R20, CBRGTL-C5-R20);

– Random repair generation with tabu lists of repairs with tenures 10, 20, and 50 (RRGTL-
R10, RRGTL-R20, RRGTL-R50).

A case-base was trained using 200 examples of violations and repairs derived from preference
and final rosters over two four-week periods. A seperate four week preference roster was then used
as the new problem to be solved for each of the runs. This initial roster contained 62 violations
of 10 different constraints. The number of iterations was limited to 500 and the best solutions
(i.e. those with the least constraint violations) were recorded. Table 1 shows the average results
of 10 runs of each algorithm variant.

The first column of results in Table 1 shows the average number of constraint violations in
the best solution that was found in each the 10 runs of each algorithm. A value of 0 indicates that
feasibility was found on every run. The number of iterations needed to get the best solution and
the percentage of nurse shift preferences satisfied are shown in the second and third columns.
The number of feasible solutions found by each algorithm is shown in the final column

These results show very clearly the benefits of the hybrid algorithm. The RRGTL algorithm
did not reliably find feasibility within 500 iterations for any tabu tenure although if allowed to
continue it was successful eventually. The case-based repair generation algorithm with no tabu
lists found a reasonable result comparatively quickly but was unable to do better irrespective
of any additional time it was given. Invariably, this algorithm got ’stuck’ in a repeating loop
of violations that could not be resolved due to the reasons given in the previous section. All
of the hybrid CBRGTL variants found feasibility with excellent reliability indicating that the
combination of repair strategy from the case-base and diversification from the tabu-lists overcame
the difficulties that the other two algorithms experienced on their own. Figure 2 shows the
average performance of the three best variants in each class (CBRG, CBRGTL-C5-R20, and
RRGTL-R10) against the number of iterations.

The real value of the hybrid approach can be seen by the nurse satisfaction performance. The
expert trained case-base stored examples of repairs of constraint violations that attempted to
reduce the violation of nurses individual shift preferences. The random repair generation method
did not take this into consideration and so could not be expected to perform well on this crite-
rion. More than one third of the nurses preferences were not satisfied in each of the best solutions

9

Fig. 2. Degree of violation vs. number of iterations (Max 500 Iterations)

for the tabu search variants (RRGTL). All of the case-based variants (CBRG and CBRGTL)
performed excellently with respect to nurse satisfaction because of the implicit rostering knowl-
edge stored in the case-base. Figure 3 shows the average nurse satisfaction performance over 500
iterations.

The results presented here are not intended to show that the case-based approach can out-
perform methods that employ a tabu search strategy. The RRGTL method shown here is by no
means optimised for the problem - any sensible implementation would at least include explicit
rules for avoiding violation of nurse preference under specific conditions and would probably
chose repairs by minimising the number of new violations created. However, the results do show
that when combined with a very simple algorithm, case-based repair generation can increase
performance significantly.

6 Conclusion

In this paper a method for combining case-based reasoning with a meta-heuristic algorithm has
been introduced. A case-base is used to capture expert rostering knowledge by storing examples
of constraint violations and their corresponding repairs. A simple heuristic constraint satisfaction
algorithm using tabu lists is enhanced by the knowledge stored in the case-base, leading to a
significant performance improvement.

In fact the benefits of a case-based approach are threefold. The expert-quality repair examples
stored in the case-base help the tabu search find feasibility much faster because they guide the
search in sensible directions. The repairs in the case-base avoid violating nurse shift preferences
wherever possible and so guide the search towards feasible solutions with high nurse satisfaction.
Finally, all of this information is stored implicitly by the case-base and therefore does not need
to be hard-coded into an algorithm using explicit rostering rules or objective functions.

Future research will focus on improving the knowledge capturing ability of the case-base.
Methods to maintain the consistency of the knowledge and to identify erroneous or bad quality

10

Fig. 3. Shift preference satisfaction vs. number of iterations (Max 500 Iterations)

data must be developed. The incorporation of the case-based repair generation methodology
into other constraint satisfaction techniques will also be considered.

7 Acknowledgements

This research is supported by the Engineering and Physical Sciences Research Council (EPSRC)
in the UK, grant number GR/N35205/01.

8 Appendix

The retrieval indices for the example in Section 3 are:

– |PR
v | - The number of constraint violations in R;

– GSat - The percentage of shift preferences satisfied for all nurses;
– GUO - The percentage of available working hours assigned for all nurses over the whole
roster;

– GUW - The percentage of available working hours assigned for all nurses over the week
containing the violation;

– Mag - The magnitude of the violation (in this case this is the cover shortage);
– LSat - The percentage of shift preferences satisfied for nurses with the NurseType described
in the violation;

– LUO - The percentage of available working hours assigned for nurses with the NurseType
described in the violation over the whole roster;

– LUW - The percentage of available working hours assigned for nurses with the NurseType
described in the violation over the week containing the violation.

The adaptation indices for example are:

11

– SCOA - The number of nurses of all types assigned to the original shift on the day of the
repair;

– SCOT - The number of nurses of the NurseType described in the repair assigned to the
original shift on the day of the repair;

– SCNA - The number of nurses of all types assigned to the new shift on the day of the repair;
– SCNT - The number of nurses of the NurseType described in the repair assigned to the
new shift on the day of the repair;

– Util - The number of available hours assigned to the nurse in the repair;
– SP - A shift pattern distance score (described in detail in [19]).

The original shift is the shift assigned to the nurse before the repair was applied whilst the
new shift was the shift assigned by the repair.

NB. Due to the small size of the example problem some of the indices described here may
seem trivial. In larger, more complex problems this is not the case.

References

1. S Abdennadher and H Schlenker. INTERDIP – an interactive constraint based nurse scheduler. In
Proceedings of The First International Conference and Exhibition on The Practical Application of
Constraint Technologies and Logic Programming, PACLP, 1999.

2. J L Arthur and A Ravindran. A multiple objective nurse scheduling model. AIIE Transactions,
13(1):55–60, 1981.

3. J Bailey and J Field. Personnel scheduling with flexshift models. Journal of Operations Management,
5(3):327–338, 1985.

4. R N Bailey, K M Garner, and M F Hobbs. Using simulated annealing and genetic algorithms to
solve staff scheduling problems. Asia-Pacific Journal of Operational Research, 14:27–43, 1997.

5. N Beaumont. Scheduling staff using mixed integer programming. European Journal of Operational
Research, 98:473–484, 1997.

6. I Berrada, J A Ferland, and P Michelon. A multi-objective approach to nurse scheduling with both
hard and soft constraints. Socio-Economic Planning Sciences, 30/3:183–193, 1996.

7. E K Burke, P De Causmaecker, and G Vanden Berghe. A hybrid tabu search algorithm for the
nurse rostering problem. In Selected Papers from the 2nd Asia Pacific Conference on Simulated
Evolution and Learning Volume, volume 1585 of LNAI, pages 187–194. Springer Verlag, 1998.

8. E K Burke, P I Cowling, P De Causmaecker, and G Vanden Berghe. A memetic approach to the
nurse rostering problem. Applied Intelligence, pages 199–214, 2001.

9. B M W Cheng, J H M Lee, and J C K Wu. A constriant-based nurse rostering system using a
redundant modeling approach. Technical report, Department of Computer Science and Engineering
at The Chinese University of Hong Kong, 1996.

10. K A Dowsland and J M Thompson. Solving a nurse scheduling problem with knapsacks, networks
and tabu search. Journal of the Operational Research Society, 51:825–833, 2000.

11. Kathryn Dowsland. Nurse scheduling with tabu search and strategic oscillation. European Journal
of Operational Research, 106:393–407, 1998.

12. F Glover. Tabu search - part i. ORSA Journal of Computing, 1:190–206, 1989.
13. J L Kolodner. Case-Based Reasoning. Morgan Kaufmann Publishers Inc., 1993.
14. A Meisels, E Gudes, and G Solotorevski. Employee timetabling, constraint networks and knowledge-

based rules: A mixed approach. In Practice and Theory of Automated Timetabling, First Interna-
tional Conference, pages 93–105. Springer, 1995.

15. H Meyer auf’m Hofe. Solving rostering tasks as constraint optimization. In Selected Papers from the
3rd international conference on Practice and Theory of Automated Timetabling (PATAT), Springer-
Verlag Lecture Notes on Computer Science, pages 280–297. 2000.

16. S Minton, M D Johnston, A B Philips, and P Laird. Minimizing conlicts: A heuristic repair method
for constraint-satisfaction and scheduling problems. Artificial Intelligence, 58:161–205, 1992.

17. K Miyashita, K Sycara, and R Mizoguchi. Modeling ill-structured optimization tasks through cases.
Decision Support Systems, 17(4):345–364, 1996.

12

18. S Petrovic, G R Beddoe, and G Vanden Berghe. Case-based reasoning in employee rostering:
learning repair strategies from domain experts. Technical Report NOTTCS-TR-2002-4, Automated
Scheduling Optimisation and Planning Research Group, School of Computer Science and Informa-
tion Technology, University of Nottingham, 2002.

19. S Petrovic, G R Beddoe, and G Vanden Berghe. Storing and adapting repair experiences in em-
ployee rostering. Technical Report NOTTCS-TR-2002-5, Automated Scheduling Optimisation and
Planning Research Group, School of Computer Science and Information Technology, University of
Nottingham, 2002.

20. W P Pierskalla and G J Rath. Nurse scheduling using mathematical programming. Operations
Research, 24(5):857–870, 1976.

21. G Schmidt. Case-based reasoning for production scheduling. International Journal of Production
Economics, 56-57:537–546, 1998.

22. S Scott and R Simpson. Case-bases incorporating scheduling constraint dimensions - experiences
in nurse rostering. In Advances in Case-Based Reasoning - EWCBR98, Lecture Notes in Artificial
Intelligence. Springer Verlag.

23. M Warner. Scheduling nursing personnel according to nurse preference: A mathematical program-
ming approach. Operations Research, 24:842–856, 1976.

13

	Return to Program Book

